Oracle Berkeley DB

Berkeley DB
API Reference
for C++

12c¢ Release 1
Library Version 12.1.6.1

ORACLE
BERKELEY DB

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at: http://
www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
https://forums.oracle.com/forums/forum.jspa?forum|D=271

Published 2/17/2015

http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
https://forums.oracle.com/forums/forum.jspa?forumID=271

Table of Contents

o] 1= = Lo xiii
Conventions Used in this BOOKccvireietiiiieiriiiriitiiiaereraeereneereneerenneennes xiv
FOr More Informationeeeeeiiie ittt r et ee e e eeeeesennreeannesannnanes XV

1. Introduction to Berkeley DB APISuueeiiiiiiittiiieiiieteeereiieeeeeeeenrneseeeessnnneeeseanns 1

2 2 TS 0o o =T T = 2
Database and Related Methodsccceiiiieiiiiiiiiiiiiiii e e e ereeeaaees 3
DD::ASSOCIATE() veverererrnnureeeeeenuueeeeeeesueeeeeesesnaseseesesnnnsssssssnnnssssssssnnnssssessnnes 6
Db::asSOCIate_fOr@IGN() uveeeerreiieeeeeererrueeeeeeenrneeeeeeesaeeeeesesnsessesessnnssesesennns 10
D] o 1 o (o =T (PP 13
(D] oI ee]11] o - Lot f) H PP PPP 16
(o[elo] o) A PP 20
3o 21
D] 0 1 e 1= VPP 23
D] o 1 =] o of PP 26
DD2iEXISTS() vuveeeeeeeennueeeeresenneneeeesernaneeeesssnsesessessnnnsessessnssnssssssnnnsssssessnnnnes 28
D] 0 303 e | PP 30
D] o (= () I PP PP 31
(D] o (=l oY dl 111141 1G5 I PP 36
Db::get_DYytesSWapPEA() tevereretiieiiitteteeiiieeeeeeenrneeeeerensnneeeecessnnaseeeeennnneneens 37
(D] o I« (=] il of- ol) T=1Y 4= I P PP PP 38
Db::Get_Create_dir() teveeeeeeerereiieeeeeeeeiueeeeeeseneseeeessnnneessesssnnsssssessnnnsaseesnnns 39
(D] o+ (= il e o] g =11 o L=T) PP PP 40
Db::get_eNCryPt_flags() cueeeeeeeerrrueeeereriieeeeeeeerueeeeeeessnneseesessnnsseseesssnnsesssanns 41
D] o (= =] o o A L =T PP PPN 42
D] oI« (= A = 4 0] b (T PP PP PP 43
D] o« (=l L T] (I PP 44
(D] o4« (=1 T i - et o o P PP 45
(D)o I (=l T L=1 = 1 1 1 PP PP PP PP 46
DDt _NEAPSIZE() tuvvrreerrenineneereeiieeeeeeenrnueeeesessnnesessessnssnseesssnnssssesesnnnnnes 47
Db::get_heap_reQioNSIZE() teveveeetieeeiieeeeeeeireeeeeeeerraeeeeesssnnsseessssnnssesessnnnnes 48
Db::get _LK_@XCIUSTVE() tevennetieieiiieteeeeenineeeeereernaeeeesessnnesesesssnnnneeesennnneasenns 49
(D] o (=l o] e [=] o PO PPN 50
Dbt _MSGFILE() teurrereeieiiietereiiieeeeeeiieeeeeeeenneeeeeeennnneeeseennneseessnnnnnneens 51
D] o I« (= 1110|101 C=T PP 52
Db::get_OPEN_flags() ueeeeeereiiueeeeeeeiiieteeeeeeireeeeeeeessnseeeeesesnnneeeesessnnsssesesnnnnes 53
Db::get_partition_CallbDaCK() cueeeeereriiiueeiereiiieeeereiiieeeeeeeereeeeeeeesnnnesessesnnnanes 54
Db::get_PartitioN_dirS() teveeeeeeeeeeeiieeeeeereirueeeeeesenuaseeeessnnnseseesennssesssssnnnnsssens 55
Db::get_PartitionN_KEYS() veeeeeerrreeeererrieeeeeeseieeeeeeesrseeeesesssnasesessssnnsessssannnes 56
DD Gt _PAZGESIZE() +eeeererrnneeeeeeeirneeeeeeerruaeeeeeeeenaeneeeeesnnnseessessnnsnessesennnneesens 57
(D] oI = (=1 il o1 4 o] 1 0 Y/ () P PP PP PP PP 58
Db::get g eXTENTSIZE() vevereintetiieriieteereerreeeeeeeennaeeeeessnnseeessessnnnsessessnnnneees 59
Db:iget M _dEUIMI() turereeiriiiitteteiiieeereeerneteeeeearneeeseeesnneesesessnnesessesnnnnneens 60
Do (= il (= (= P P PP PP 61
(D] o+ (=1 il (= o - Lo [I PP PP 62
DD:iGEE M _SOUICE() teerrrreeeereerneeeeeeenruueeeeeessnnsseeesesnnseesessssnssssssessnnnnessasnnns 63
(D] oI« (=1 il 1Y/ o 1= (I PP 64

2/17/2015

DB C++ API Page iii

D] T4 o) 3 | PP PP PO 65
DD KEY_FANGE() eeeennteeenneeeaueeeeeeeenneeeerueeesneeeesneeeeassesnnssssnssessnesesnnssssneens 68
DB 1] o PP PP 71
DD IPUL() eueeeennteeeneteeeueeeenueeeaneeeeaneeeenneeeaneeeesneeeennneesnaseesnseesnnssesnnssesnnsenns 76
3]0 18 (=112 T0 1T) TR 81
3]0 =TT 10 0 1= T PP 83
3]0 B - || Lo ol T PP 85
Db::Set_apPeNnd_FECN0() teeuetrerneereieeeeneereneeeeeeeeesneeresaeessneeessnesesnassssnesesnnes 87
Db::SEt_Dt_COMPArE() tevuetierrtteeinteeeieeeeaeeeenneeeeneeeesneeeesneeesnaesesnaeessnneeenneens 89
Db::SET_Dt_COMPIESS() teuueerenuternueerenueeeenuteeeneeeenneeessaeeesnsesesnsessnnsessnsessnnneens 91
Db::SEt_ Bt _MINKEY() teureereintiieietirietieiteeereeeeeeerenneeeaeeeesneeeenneeesneeeenneseanns 94
Db :SEE_ Dt PrefiX() vevereeiereeieiterrietieieereneteeaeerenneerereeeesneesenneesonnseesnessannes 95
D] o B il ot ol T=1) 4= () P 97
B o B il el ¢ =T Y =T« | () I PPN 99
Db::Set_dUP_COMPATE() veeereerenuteeeneeeenueeeenneeeseeeesneeeesaeeesnsssesnssessnseesnnnsns 100
D] BTl W= g Tl Y o] f | O PP PP 102
B o B W =] o et= L N 104
3]0 B =T o o i LU= T PPN 106
B o B =T o o] S (== 11 | PPN 108
DD iSEE_EITPTX() teuretrennteenttiennteeeneteeeeeeenneeeenueeesneesesneeesnnseesnsesennssesnnnenns 109
D] o Bl [=T=Te | = el () I PPN 110
DD:iSEE_flAZS() weeneerenneeeeneeeenueeeenueereneeeesueeeesnneesnaeeesnseeennseesnnssesnessennsaenns 112
Db::SET_N_COMPAE() tuveeeenetieietieeteeeneeeeneereaneeeenaeeesneeeesnseeennseesneesennnaenns 118
D] o Bl T i = et oo PP 120
3] o Bl T =T 1 Y I PN 121
3o Bl o T 1= U= 1 o T T PN 122
Db::SET_NEAPSIZE() tuvveeeneeeenneeeennteenieeeeneeeenneeesseeeesaeeesneeesnaesesnaseesnesesnnnes 123
Db::set_heap_reQioNSiZE() veveueerereeereretreneerereeeeneeeenneeeeneeeesneeeesneeesnneeenneens 125
3] o B L = el V1 V2= PP 126
3]0 B o] e [=T o I s 128
Db::set_MesSage_StrEAM() teueeeerreereruteeeeeeenneeeenneeeseeeesneesesneeesnnsessnsesennneens 129
Db::SEt_MSGCAIL() teneriiietiiitiiitiei et ereieeeerneerenaeeraneeeanneeeenneessnneeennees 130
Db::SEE_MSGIILE() teurrereneeeettienteeeinteeeieeeeaeeeenneeesneeeesneeessneeesnnsessnassenneens 132
DD::SEL_PAZESIZE() tererrtrennetrenntereneteeaneerennteeeneeeesneerenneeesneesesnesrennseesnsasanns 133
s B il o T- Ly 1 o) N O PP PP PP PP 134
Db::set_partition_dirS() weeeeeeeeeereeeereeeeiuteeeneeeesneeeesueeeseeeesneeessnseesnsesesnneens 136
DD::SEE_PriOrTEY () veuveereneeeenueereneeereeeeerneeeereeeesneeeesaeesenaeessnesesnnsesonneesnneens 137
Db::SEt_Q_@XEENTSIZE() teveerernteenneerenneeeenneeeeieeeesneeessneeeseesesnaeessneeesnnesesnnens 138
3] o B il (e (=111] PP 139
3] o B Al (I (= [140
Do Y=l il (= o - Lo [PP PP PP 142
3o B il (I o1V ol =] () I PPN 143
Db::SOrT_MULEIPLE() werenntieretieieteeiteeereteeeeeeenneeeaneeeenneeeenneeesnsesesnseeenneennn 145
3]0 4] = (PPN 147
Do S - Ll o] [) TR P PP 155
D] B4 o ol I PPN 156
3]0 18 4 U] Vot=Y Y T PPN 158
DD UPGrAdE() ueeeenneeeenueeenneeeenneeeeeeeesneeeesneeesneeesnsesesnesesnseesnassssnesesnnnens 160
Do Y T o | Y (PP 162

2/17/2015

DB C++ API Page iv

(Do) 3 [T 10T 3 {=Telo] e | Lo HR PP 165

T I Lo D o Tl o -V e | PP PP 167
Database Cursors and Related Methodseeeieiiiiiiiiiiiiiiiiiiiiiiiiieeieennneens 168
3]0 B ol U] 5o () T PP 169
3] Yoo o 11T [T 172
Do Tebd ol 111 0] IR PP PP PP 174
3] Yo ofo 11 1}) PPN 176
3] Yo [I (T PN 178
Do Tebd e 1] 5] H PP 181
Do Teid =] o PP PPN 183
D)o Tebid =yl o 10 (o] o 1Y/ NP PP PP PP PP PP 191
Do Tobd o 1¥ | (I PP 192
DDC:iSEL_PIIOMTEY() «eeneeereneeeenneereneeeeeeeeenneeeeneeeesneeeesneeseaseesnsesennsessnnsennnes 196

4. The Dbt Handle ..viiiniiiiiiiiiiiieii ettt eeieeeeeeeeenneeeenaeeeaneeessneeesnaseesnasesnnes 197
DBT and Bulk Operationsccueeieieeereetieietereieeeenneerenaeeeeneeeesneeeonaeessneseennees 202
DDMULLI P I EIAtOr veinnetieitt it teiteeiteeetteeereeeeaneerenneeesneeeenneesanneeesnneeanns 203
DbMULLIPlEDAtAltOrator «uve et eeettieeiteeiteeiteeeeeeennteeaneeeenneeeanneeesnnesanneeens 204
DbMultipleKeyDatalteratoreieeeeieietieietieiteeeneteereereneeeanneeeesaeeeonneesnneens 206
DbMultipleRecnoDatalterator «uueueeeeretieeieteeiteeeitteereeeenneeeeneeresneeeenneeeanneennn 208
DBMULLIPLEBUILAET weienet ittt it e e ei et eeeeerenaeeeenaeeanneesenneeesneeennns 210
DbMULtipleDataBUIldereeeiueiieitiiiiiiiieeieeiteeennteeeneeeenneeeennneeanaesanneeens 211
DbMultipleKeyDataBuildereieeeiiiieiiiiiiiiiieiitieieereneeeaaeeeenneesenaeennneens 213
DbMultipleRecnoDataBuilderc.eeeeiuiiiiiiiiiiiiiiiiieiieeiieeeieeeenaeeaaneeeanneens 215

5. The DBENV Handleeeiiiiiiiiiiiiiiii ittt eeiteeeeeeenaeeeeneeeasneeeenassssneeennnnens 217
Database Environments and Related Methodsc.eviiiiiiiiiiiiiiiiiiiiiiiiiiieeeenn, 218
DBENV::add_data_dilr() «eeeeeeieeeeieiiiieiiiiiiieeeteeaiieeeeeeenaneeeeeeenssnsseeeennnnnes 220
DBENV:IDACKUP() +etennetienutereeteeietreneeeeaeereraeeeeneeeesneeessasessnneessneeesnnsessnnens 222
3] 2 5 NV ol (o 1Y T PN 225
3]0 1 o 1 PPN 227
DBENV::dDDAaCKUP() teueterrnetieitiriitieeietteieerereteereereraeeeeneeessneeesnneessneeesnnens 229
D] 2 Ve o ¢ =T 4 To V=Y T PP 231
D] =\ | o] ¢ =T s F=T =T () I PPN 233
3] 23 R =T o o T PP 236
D]] 2V - 1] Ul o1 TR PPN 238
D] o Vg 1) e N =YL (PN 240
DDENV: i fULLVEISTON() tureteettieiiittteieiiieeeteeeaiieeeteeeaiaeeeeeesenneseesessnnseseeennnes 242
DBENV::Get_Create_dilr() veveeerereeeeeneeienueereneeeenneerenaeereneeeesneeeenneeesnsesesneesanns 243
DbENV::get_data_dirS() teveeeeeneerereeereneeeenneerereeeeseeeesneeeonaeeesnecesnasesonasesnneens 244
DbENV::get_encrypt_flagS() «eeeeeeeeereereneteenneerereeereneeeenneerenaeeesneeeesneerennseennes 245
Do B L] M= 117) PP PO PP 246
DBENV::iGEL_ITTIlE() teurrireetieettieiteeeieteeeeeeeaneeeanaeeesneeeesneeeennseesnsesenneeenns 247
DDENV:iGET EITPIX() terenuteernttieeneereneteeaeeeenueeeenueeesnseeesnsesesneeesnsssesnseesnnsenns 248
DbEnv::get_backup_CallDacks() ...eeeeueereiutierietienieeeeieeeeneeeesneeeenneeesneeeenneeenns 249
DbEnv::get _backup_CONfig() .ueeeeretieritiieiutierietienieeeenneeeaieeeeseeeesneeesnaesenneeens 250
DDENV:iGEL flAagS() «eeeenreeeenueeenneeeenuuerereeeesueeeesneeesaeeesneeeesnseesnnssesnsasennneenn 251
DBENV:iGEt NOME() ternttieintteeitteeieteeeeeeenneeeenneeesneesesneeesnnseesnsesennseeenneenns 252
DbEnv::get_intermediate_dir_mode() ...ceeeeieeieiriietiriieiriieeeeneeeenneeeenneeeenaeen 253
DbENV::get_MemOrY_TNIt() weeeereeerrreeeerneereneteenneeeenneereneeeesneerenneessnseeesnessannes 254
DbENV::Get_MEMOIY_MAX() teeueeeerueeeenneeeenueeesneeeesneeessaseesnasessnseessnssesnsesnnes 256

2/17/2015

DB C++ API Page v

DbEnv::get_metadata_dir() v.eeeereeeeeneeeereeerieeeeneeeerueeeseeeeaneeeesaeeesneesasnneenns 257

DBENV::8et _MSGFIlE() vevernterrttieiiteeiteeeieteeaeeeenneeeeneeeeseeeenneeesnaeeesnesennnees 258
DbENV::get_OPEN_flagS() «eeeeeneererueeereteeneerereeeesneeeesneeroneeeesneeeesaeeesnaeesnneens 259
DBENV::GEt _SHIM_KEY() uetrenteriietieeeteenteeenueeeaeeeesneeesnaeeesnsesesneeesnsseesnneenns 260
DbENV::get thread_COUNT() tiveeirreeerieierieeeeiieeeeineeerieeeeseeessneeesnneeesnasesanees 261
DBENV::GEt_TIMEOUL() weerrrttieinetreietereeteenneerenneeeaneeresneeeenneeesneesenneeeennesannes 262
DBENV::GEt_ EMP_dIN() «eeeeretierneeiennteraneeeeneerenueereneeeesneesesneessnsseesneesenneeennes 263
DDENV::GET_VEIDOSE() uvteennttreuteneneerenneereneeeesneeeesueeeeneeeesnessesneessnsssesnsssanns 264
DDENV:I0Z_VEIITY() terenntieeetieiteeenuteeeeeeenneeeenneeesneeeesneeessnseesnsesennseeennnenns 266
3] 2 NV] T =T =1 o I N 269
DDENVIIOPEN() teurtttenteraneteenneerenneeeaneeeesneerenaeeesneesesnessesnseesnsssennessennssennes 271
D] 2 NV =T 1210 17T (PPt 277
3] 2 N Ay Y - (o o () I PPN 279
DbENV::set_app_diSPatCh() «eeeeeeeereeieieterietieieereneeeeneerenaeeesneeeesneeeonaeeennees 281
DbEnv::set_backup_CallDacKS() .eeeeerrererueeeeieeienieteeineeeeieeeeseeeenneeesneeeenneeenns 283
DbENV::set_backup_CONfig() .ueeeereteerueeieruteenieeeeneeeenueeesneeeesneeeenneeesnsesanneeees 286
D] 2 NV Y Wl - = W | [T 288
DDENV::SEt_CrEate_dil() uveeeieriiiteetiieiiiiteeteeeiiteeteeeaineeeeeeeesnsseeeeeensnseeseennn 290
DDENV::SE_ENCIYPE() veeenureennterenneeeenneeeeeeeenneeeesueeesaseesnasessnesessaseesnesesnnes 292
DbENV::set_eVent_NOTIfY() ueeeereeiereerrietienetieieereneeeeaneerenneereneeeesneesenneeennes 294
D] o N Y Y Al =T of- || T P 300
Do) o Y Y =T i | LT T PPN 302
DDENV::SEt_erTOr_STrEAM() vevieieiintetiieeiieteeteeiiieeeeeeeatineeeeeeesssseeeeeessnneseeennn 304
DDENV:SET_EITPIX() terenuteeenttrennteeeneeeeeeeeenneeeenneeesneeeesneessnnseesnseessnneesnnssans 305
DBENV::set_feedback() uvveeiiiiiii ittt et iii e e eeii e eeeiiaeeeeaanas 306
DDENV::SEE_flAagS() «eeeenneeeeneeeenueeeenueeeeneeeesneeeesueeesaeeesneeessnseesnnssesnssesnnneenns 308
DbEnv::set_intermediate_dir_mMode() «..eiieeiiieeeiiiiiiiiiiiiiiiiiieeiiieeeeeeaiiaaaenn 315
DDENV: iSOt _1SAlIVE() teveeeitttt ittt iieiiii et eiieeeteeeieaeeeeeansseseeennsnseeseenns 317
DbENV::S€t_MEeMOIY_TNIT() veeeereeeereerenueeeeneeeeneerereeereneeeesneeeenneeesnseeesneesannes 319
DbENV::SEt_MEMOIY_MAX() teeueeeerueeeenueeeeneeeesneeeenneeessaseesnssessnesessassesnasssnes 321
DbENV::set_metadata_dir() «eeeeeeeeieeeiiiiiiiiiiiiiieetieeiiieeeeeeeaiieeeeeeennnneeeeean 323
DbENV::set_MeSSage_STrEamM() «eeeueeeerueeeerueeeeneeeenneeessneeesnessesneeessneeessaessonaees 324
DBENV::SEt_MSGCALL() weereneerrinetreietereetreieeerereeeenneerenaeereneeeesneeeonnsessneesennees 325
DBENV::SEt_MSGFIlE() veverrteerttieittteiteeeneeeeaieeeeineeeeneeeeaneeeenneeesnneseonaeesnnees 327
DBENV::SEt_SHM_KEY() uvttenttrinteeneeeenuteeenaeeeeneeeesneeesnaeeesneesennneesnnssesnaeenns 328
DbENV::set_thread_COUNT() civveeetiiiiiiiiiiiiieieeeiieeteeeeieeeeeeeeiieneeeeennnnns 330
DBENV::set_thread_id() «oveeiieeeriiiiiiiii ittt it ettt eeeeieee e reeenaaaees 332
DbEnv::set_thread_id_StriNG() «eeeveeeerreeerieiriieieiieeeneeeeneeeeeneeeesneeeesaeeeonneen 334
0] 2 N Y Yl [0 =T 11 (PN 336
DBENV::SEt_EMP_dIir() weeeeeeeeneerereteraeeeeaneereneeeesneeeesaeesoneeessneeessnsessnneesnnes 339
3] o N Y Y =T 0T 1 =T [[PPN 341
DBENV::SEAt_PriNT() veeneerenneereuteereeeenneeeaneeeesneeeesneeeasneeesneesesnsessnsesesnaeenns 344
3] o N R) o o (P 345
DDENV: IVEISION() vettiteinttetteeeieteeteeenaneeeeeeessnaeeeeeeesssssesssessnnsesseeesnnseseeenns 346
6. The DDEXCEPLION CLaSS tuuuetreutereneteeeneeeenneeesneeeesneeeenneeesnsesesnseeesnseesnassesnneenns 347
D] T O ool =] 0 o] 1 N 348
[D]a]D]CF: Te | FoTel (b Cel=] o] 4 o] s I PP PP 349
DbLOCKNOTGrant@dEXCEPLION .uveienueiereeeeneeeeineeeaieeeenneeeesneeesnaeeesnaeeenneeesnnees 350
DBMEMOIYEXCEPLION .uvteinttiiitereieteeaeeeenneeeeneeeesneeeesneeeenaeeesneesennsessnneeannes 352

2/17/2015 DB C++ API Page vi

DbRepHandleDeadEXCEPLION . .uuiiittiiittieiteeeeeieineereneeeenneerenneereneeeenneesannes 353

DbRUNRECOVEIYEXCEPTION tetnnuttietteiiteeeieeeeaeeeenneeeenneeesneeessneeesnneesonaeennnees 354
7. The DBLOCK Handleciiiiiiiiiiiiiiiii i ieeieteenneeeenaeeesneeranneesenseeennnesannes 355
Locking Subsystem and Related Methodscceviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiennees 356
DbENV::get LK_CONFLICES() tevrrerreeirietieiteeeieteeeeteennteeaneeeenneeeesneeesneesennneens 357
DBENV::Get LK_dELECT() tevverrrnetreintirietieieereieeeeneeeenneeeeneeeenneeeonneessnneeannees 358
DbENV::get K_MaX_LOCKEIS() teeueererntirrietienetieiteeeneeeenreeeenneeeenneeesneeeenneeenns 359
DbENV::get LK_MaxX_LOCKS() veverreereutieneereieteraieteeaneereneeeeeeeeenneerenaeeesnaeeennes 360
DbENV::get LK_mMaxX_0bJECES() «eveerneirieirieiiitiiitiiitiiitiiiiiitiitietiieeiaeeaneeanaens 361
DbENV::get LK_partitionS() «eveeeeereeiereeereietiereereneeeeneeeenneeeeneeessneeesnaeeesneens 362
DBENV::GEt _LK_PriOrTTY() ceeeeerereeeeeeeeenneerereeeeeeerenneereneeeesneesennseesnaseesneseanns 363
DbENV::get LK_tableSiZe() viveeiiiieiiiiiiiiiiiiiieiie et et eeeneeeeiaeeeenaeennnaens 364
DBENV::SEt_LK_CONFLICES() vuurererieniiieeeiieiiiieetieiiiieeeeeeaiineeeeeeaninseeeeeennnnneenn 365
3] 2 NV Yl T[] Tt o PPN 367
DBENV::set_LK_MaX_LOCKEIS() teeuureeetieieiieeeiiiiiieeeeteeiieeeeteeeinseeeeeessnseseeennns 369
DBENV::Set_LK_MAaX_LOCKS() teveennneeetieiiietetieniiieeeeteeaiineeeeeeeaneeeesesesnsseeeeennns 371
DbENV::set_LK_MaxX_0DJECES() veeeerreeerreereineeeeieeeesieeeesueeeeneeeesneeeesneeessneeeonnees 373
DbENV::set_LK_partitionS() «eeeeeeeeeeieneterrietieieereieeernneerereeeeeeeessneeesnnesenneens 375
DBENV::SEt_LK_PriOMTEY () tevveereneeerreerenueereneeeraneeeenueereneeeesneesesnsesonsesesnsssannes 377
DBENV::SEt_LK_tableSiZE() teverrrrieiiiiii ittt ittt ieeeiieeeeeeeniaeeeeeaannnaes 378
3] 21 NV Uo Tl e] o =Tt o) T P 380
DDENV:IIOCK _SET() tuvveernnteeitteeiteeeieteeeeeeenueeeenaeeeseeeenneeesnneeesnaesssnseesnneens 382
3] 215 V] Uo Tl T I TR PPN 385
[B]] 21 NV Uo Tl [e I 1 ¢ =1=T) PPN 386
DBENV:IIOCK _PUL() +erenntereetiereeeeiteeeeeeenneerenneeeeneeeesneesesnsessnseessnessennssennes 387
3]] 23 NV U Tl) =1 PPt 388
DBENV::10CK_Stat_Print() eeeeeneeeereerereterneereneeeeeneeeesneeeerneessnecessneesonneesnneens 394
3]] 2 NV U Tl =T of 396
8. The DBLSN Handleeiiiiiiiiiiiiiiiiiii it eii e eteeeeeneeeanaeeeenneeeaneeesnneennnnens 400
Logging Subsystem and Related Methodsccceiiiieiiiiiiiiiiiiiiiiiiiiiii i e e, 401
[D]0] a0 VAR 1<) dl U= 2 s 1 4= | PP PO 402
D)oY (VA 1<yl U= e 1§ O O P PP PP PPN 403
DbENV::get I8 _fileMOde() weeveenteriietirieiiiitiiiiteeieeeeieeeeeneeeenneeeonneessneeeennees 404
DBENV::GEt 1S _MAX() tuverennteraueeenneerenueeeeneeeesneerenneeseneseesneesennssesnsesesnaesanns 405
DbENV::get S _reGioNMAaX() cuueeeeneeeerneeeenueeeeneeeesneeeenneeessesesneeesnnnessnnssennaaens 406
DBENV::L0Z_arChiVE() wuveerreeieieiiiitirittieitereneeeeneerenaeeesneeeesneerenneeesnsesannes 407
DDENV:l0Z8_CUIMSOI() tevuneteenterenneeeaneeeeaneeeesneeesnaeeesneeesnnseesnsssesnssesnnnsesnsesns 409
D]a] a0 (A o A 1 1=T § I PP PP 410
DBENV::L0Z_fLUSN() tenreiieintiiietiiittiiteeeieeteieeeeeeeenneeraneeeenneeessneesonneeennens 411
DBENV::10Z_8et_CONTIG() vererrrerenneerereteeneeeerueeeeneeeesneeeesueeesnseeesneeesnnseesnneenns 412
DBENV::L0ZG_ PriNtf() veeeereetieieeieiteraieeeeneererneereeeeesneeresaeeesnsesesneesenneeennes 414
D010 1A o= o 101 { § H PP PP PP 415
DBENV::10Z_SEt_CONTIG() veeerrrererntereneeeeneeeerneeeaeeeesneeeesneeesnaeeesnseeennneesnnesns 417
DDENV::L0Z_STAL() weerenuteenneerenneerereeeenneerenneereneeeesneesenneeesnessesnessennesesnsssennes 421
DBENV::10Z_STAt_PriNE() weeeereeeerneeeerneereiueeereeeesneeeenneeesneeeesneeesnnseesnsesenneeees 425
DBENV::SEt 1S _DSIZE() teurrerenetieeeerennteeereteeneeeennteeeneeeesneeeenneeesassesnsessnneennn 426
DBENV::SET LG _Ail() vevenetienneireintiereeeeaneeeeneeeeeneeeesneeeenneeesnsesesnseeennssesnasenns 428
DbENV::set L8 _fileMOde() «uererneireietiiiietiiiteriiteeieerenaeeaeneeeenneerenaeeesneseannees 430
DBENV::SET_LS_MAX() vuverenneereneeeenueereneeeeaneeeesneeeenaeessneeeesasessnneessneeesnnsesnees 431

2/17/2015

DB C++ API Page vii

DbENV::Set_ |8 _reGiONMAX() cuveeeeneeeerneeeerueeeeneeeesneeeesueeesneseesneeessnseesnsssesnneens 433

The DBLOZC Handleuviiiiiiiiiiiiiiieii ittt eeieeeeieeeenneeeanaeeaaneeesnneeeannesns 435
DDLOZGC:ICLOSE() vuveernneereneerenneerenueeeaneeeenneeeeneeeesneesenneeesnneeesnsssennesesnnesannes 436
D] o] e otd =) o PP PP 437
DDENV::l0Z_COMPAIE() tuueerenneereneeeenueeeenueeeasaeeesneeeesnseessssesnsseesnseesnnssesnseees 439
9. The DbMpOOLFile Handleciieeiiiiiiiiiiiiiii i eiiereerereeeeneeeanneeaanaeeannens 440
Memory Pools and Related Methodscc.veeiiiiiiiiiiiiiiiiiiiiieiiieiieeeieeeneeenns 441
Do BT il 111 o) I PP PP PP 443
DbENV::get_CACNE_MAX() «eerenuteenneerenueereneeeesueeeenaeeeseeeesneeesnneessneessnnsssonnens 444
DBENV::8Et_CACNESIZE() “vveenetreinteeeiueeeeneeeeaeeeenaeeesreeeesneeeesneeesnnssesneeesnneens 445
DbEnv::get_mp_mMaX_0PeNnfd() «eeeeeeeereretienieerereeereneeeenneeeenaeeesneeeesneeeoneeeannees 446
DbENV::get_MP_MAX_WIEE() tueererneereneeernneereneeeeereeessneeresaeeeseeessneeesnneeennaens 447
DbENV::get_MP_MMAPSIZE() vuveeeerureerneerenueeeenueeesneeeesneeessneeessaseesneessnneesnnees 448
DbENV::get MP_MEXCOUNT() ueerenteeeneeeneeeenneeeenueeesneeeesneeessneeesnnsessneeesnneens 449
DbENV::GEt_MP_PAZBESTZE() veeerrtrenneeraneeeenneerenneereneeeesneesesnseesnsssesneesennseennes 450
DbEnv::get_mMp_tableSiZe() vuveertiieitiriitiiiiiiieiiteteeeeneeeenreerenaeeeanaeeannes 451
DBENV::MEMP_fCrEate() veverrttreneteeeetiennteeareeeeaeeeesneeessaeeesnseresneeesnneeesnneenns 452
DBENV:iMEMP_I@GISTEI() veveruteerneteenntteernteeaeeeeaneeeesueeesneeeesneeessnseesnssssnnneens 453
DBENV:iMEMP_STAL() +eeenttranteeeeteeneeeenneeeereeeeseeessneeesraseesnaeessneeesnaesesnnes 455
DbENV::mMemMpP_Stat_Print() «eeeeeeeerreeiereerereteeneerereeereneeeesneeresneeessesesneeeannes 461
DBENV:IMEMP_SYNC() tteenneerenueeranaeeenneeeenueeesseeesnsesesaseesnsssssnsssesnseesnsssannes 462
DBENV::MEMP_trICKIE() uveeerntieeetieitteeiteeeieeeenteeeneteesneeeesneeeennsessnsesennnaens 463
(D)) 2 \AREY=Y il of- Lol o TSI 10 - D PP 464
Do) 2\ Y il of- Lol o 11 4] [IR 466
DbEnv::set_mp_mMaX_0OPenfd() «eeeeeeeerereteenietiereeeerieeeenneeeeneeeeseeeesaeeeonaseannees 468
DbENV::Set_MP_MAX_WIEE() tueerernterereeeeneerenueeeeneeeesneeeesaeessneeeesaseesnasssnneens 469
DbENV::S€t_MP_MMAPSIZE() <uveeeenneeerneeranueeeenueeeseeeesneeessneeessaesssneeessnesesnness 471
DbENV::Set_MP_MEXCOUNT() vvtrennternneteenneeeenueeeeneeeesneeeenaeeesnsesesneeesnnseesnnesnns 473
DBENV::SEt_MP_PAZBESTZE() wererrrerennteenneeeenueerereeeesneeeesaseeoeeessneeessnsessnnsesnnes 474
DbENV::set_Mp_tableSiZe() veveereiirietiriiiiiiiiiiieiiteeiteeereeeeeeerenneeranneeannes 475
DDMPOOLFILEICLOSE() tennrteentteeinteeeieteeereeeenneeeenneeeaneeeesneeeenneeesnseessnneeannesns 476
DDMPOOLFILEI1GEE() weerennterenetieintteeieteeereeeenneeeenaeeesneeeesneeesnnseesnseeesneeesnnnenns 477
DDBMPOOLFILEII0PEN() tennrtttettieitteeitteeieteeaeeeeaneeearaeeesneeessneeeennseesnsessnnneens 480
DDMPOOLFILEIIPUL() tenueerentereetieitereieteeaeerenaeereneeeenneeeenaeeesnecessneeesnaseannes 482
DDMPOOLFILEIZISYNC() vveeenuteerneeeenneeeenueeeeneeeenneeeenaeeesaeeesneeessneeesnnssssnneesnnees 484
DbMpoolFile::get_clear_LeN() coveeieiiiriitieiitieieeiteeereeeenneeeenneeesneeeanneeenns 485
DbMpPOOLFile::get_fileid() veevrreerretierieiiiitieiieteeeeeeeinteeeneeeeneeeenneeesneesenneeens 486
DBMPOOLFile::80t_flagS() eeeeereererueereneeerreerereeeeeeeeenneerereeeesneeessneesonneesnneens 487
DBMPOOLFilE: 180t fLYPE() weeerrtrenntteeintieeieeeeiieeeeineeeereeeeseeessneeesnaeessneeeennees 488
DbMpoolFile::get_[SN_OffSEL() veeeerrtirrieeieiiteeeiitieiieeeiieeeieeeeneeeaseeessneeesnnees 489
DbMpPOOLFile::8et_MAXSIZE() teuvererneteenneeeeieeeeereeeenneeesraeeesreeeesneeessaeeesneseennnes 490
DbMpOOLFile::get_PBCOOKIE() teuurerrretiennterereternreteeaneereraeeesneeeenneeeenaeeesneeeannes 491
DbMPOOLFile::8et_PriOrity() weeeereeeereerereeeeneererueeeereeeesneerenaeeesnaeeesneeeennseennes 492
DbMpOOLFile::set_Clear_LEN() tovueeieieiriiiiiiiiiitieiiereneereneeeeaneerenneessnaesennes 493
DbMpPOOLFile::Set_fileid() veevrreerneeiereiieitieeieteeiieteeieeeeaneeeenneeeenneeesneesennneenns 494
DBMPOOLFilE::SEt_flagS() «eeeeeneerenueerereeeerneerereeeeeneeeesneeeeneeeesneeesnneesonaeeenneens 496
DBMPOOLFIlE::SEt_fLYPE() weeerrtrerneereintieeneteeieeeeneeeeeneeeesneeessneeessneeesnaeennnees 498
DbMpoolFile::set_[SN_OffSEL() veeeerrtierterritiriiieiiteeiieeeaieeeeeieeeeneeeenneeesnnees 499
DbMPOOLFile::SEt_MAXSIZE() veveerenreeeenueeeeneeeeeneeeenueeesneeeesesessneeesnaeeesnesesnnees 500

2/17/2015

DB C++ API Page viii

DbMpPOOLFile::Set_PGCOOKIE() teuurerrnetrerneereretieareerenneerereeeesneeeesneeeonaeeesnsesannes 501

DbMPOOLFile::SEt_PriOrity() veeeeueererueerereeeerneerenneereneeeesneeresaeeeseeeesneesenneeennes 502
10. MULEX MEENOAS ottt ieii e et e et eetateeeneeeanneeeannneesnnseennseeannnennn 504
MUEEX METNOMAS ..ueiintiiii it e e e it eeieeeeeaeeeenaeeesnaesenneesenneennnes 505
DBENV: iMUEEX_ALLOC() tuereteiieiiitttieiiiiiettteiiieeeteeeaieeeeetenaneeeseesasnsseeeeennn 506
D] 2 NV 1 2 U1 o £ €=1=] T PP 508
DbENV::MUEEX_GET_alIGN() tuvrerrnrtreinttieinteeeieereaeeeenneeeaeeresneeeesaneesneesenneaenns 509
DbENV::mutex_get_iNCremMENT() tovueeeeeeeereeerineeeeneeeeseeeenneeesnaeeesnaeeesneeesnneens 510
DBENV::MUEEX_GET_TNTE() tevrrterrneteenteeeruteeareeeeneerenneeesneeeesneeeennneesnessennneenns 511
DBENV:iMUEEX_GET_MAX() tuverennterenuteenueerenueeeeneeeesneerenaseesnseeesneseenaseesnsesannes 512
DbENV::mUEteX_get_tas_SPINS() «eeeereerereeereeererneereneeeesneeeesaeesonaeeesnesesnnesennaens 513
DBENV: iMUEEX_LOCK() wetteiinittetieeiiittetteeiieeeteeaiieeeeeeeeainneeeeeessnsseeseennnnneens 514
DBENV::MUEEX_SET_AlIGN() tuvterrnetreintereinteeaeeeenneeeeneeeeaneeeesneeeenneeesneesanneeenns 515
DBbENV: :mUEEX_SEt_iNCremMENT() «ovverirreetiiiiiiietiieiiieeeteeeaieeeeeeennnneeeesenannnes 517
DBENV: imMUEEX_SEE_TNTE() turereeiiiiiietttiiiiiieteteaiieeeeteeaieeeereeanseeeeeennnnseseenn 519
DBENV: iMUEEX_SEE_MAX() tettreeinttetieniieeetteeaiieeeeeeeaineeeeeesanneeeesesanseseeeennns 520
DbENV::mMUEEX_SET_taS_SPINS() «eeerreereretereneererueerereeeesneeeenaeeesneeessnesssnasesnneens 522
DBENV: iMUEEX_STAL() teeernnteeieiiiittttieeiiteeeteeaiieeeeeeearnseeeeeeasnsseeesensnnsesseenns 523
DbENV::MUEEX_SEAT_PIriNT() ceuveeeeneererneerenueeerieeeenneeeenueeesneeessneeesnaeeesnaeeanneees 526
DBENV: iMUEEX_UNLOCK() vnrrrtettieeiitttietiiieeteeeiiteeeteeaaaeeeeeeesnseeeeeennnneaeenn 527
11. Replication Methodsiiiieiiiiiiiiiiiiiii it eie et eeeneeeesneerenneeesneeeenneesanns 528
Replication and Related Methodsceveueiiiiiiiiiiiiiiiii e e i eeenaeenas 529
The DbSite Handle ...ciiuiiiiiiiiiiiiiiii i eii et eeieeeeeneeeanneeeanaesesnesennnnens 531
The DbChannel Handleciieeiiiiiiiiiiiiiiiiiteiiteeieeteneeeanneeeenaeesanaeeennees 532
3] 010 o= Yo T g 1] ol o1 =T T PN 533
DbChannel::SENA_MSZG() «eeuueereneteenneerenueereeeeenneererueersneeeesneesennseesnseeenneesanns 534
DbChannel::Send_reqUESE() «eveeeerereeerereteereerereeeeereeeerneereneeessneeessneeeonneeennees 536
DbChannel::Set_timEOUL() «evveeirettiiiiiiitiiiiii e ieeiiieeeeteeaineeeerenannsseeeennnns 538
DbSite::8ET_CONTIG() “evrerneerenetierieereretereeerenneerereeeesneeeenneeeoneeesnneeesnnessoneens 539
DbSite::8et_adArESS() veeereererneerereeeerneerereeeeeeeeesneeeenaeeesneeesnnsesonaeessnneesnnees 540
Do LR (] A <) [« [I P PP PP 541
3]0 1Y L (= =110 01 =Y T PPN 542
DbSite::SEt_CONTIG() eererneereetreneerereeeraeeeeraeeeeneeeesneeeenaeesoneeessneeesnneesonnens 543
D]a] o AR =T o I =] (Tt o | PP PP 545
DbENV::rep_get _ClOCKSKEW() «ueeeerutirietiriieiieeeeieeeeaeeeanaeeeeneeeesneeeesneeeonneen 548
DBENV::rep_get_CONTIG() tevrtireretirrietieitereneteeaeeeenneereneeeesneesenneessnseeenneesanns 549
DBENV::rep_get_LIMIt() veeeereereretirreeeritereieteeneerereeereneeeesneerenneessneesesneesanns 550
DBENV::reP_get NSTEES() weeeerrteerneerenuterenueeenneeeenneeeenseeesneesesnseessssessnsesennnaens 551
DBENV::rep_get_Priority() «eeereeeeeueeeerueeeeneeeeseeeenneeesneeeesneeessneeessassesnaessnnes 552
DBENV::rep_get_reQUEST() tuveeeeneereruteeerueeeneeeesneeeenaeeesneeeesneeesnnseesnsssesneeenns 553
DbENV::rep_get_TiMEOUL() vevereterrretieretrereeeraeeeenaeerereeeesneeeerneessneeessneseonnens 554
DbENV::rep_proCess_MESSAZE() «eeureereneeeerneererueeeaeeeesneeronaseesnsssssnssssnasssnneens 555
DbENV::rep_set_CLOCKSKEW() «uviernetieitiiiitieiieteenteeennteeeeerenneeeenaeeesneesenneeens 558
DBENV::rep_Set_CONTIG() tevrttreintirnetieitereieteeaeerenneereneeeesneeeenneeesnnesenneesanns 560
DBENV::rep_Set_LIMIt() veveeneereretierietieieereneteeaeereraeereneeeesneerenneessnseeenneesanns 564
DBENV::reP_SEt_NSTEES() weeeeruteenneeeenneeeeneeeesneeeesneeeenaeeesneesesneeesnsseesnaessnnseens 566
DBENV::rep_SEt_PriOritY() «eeeueeeeeeeeeerueeeeneeeeseeeenueeesnaeeesnesessnseesnasessnaseenneens 568
DBENV::rep_SEt_reQUEST() uveeerneereruteeeeeeenneereraeeeaneeeesneeeenaeeesnsesesneeeennssennes 570
DbENV::rep_set_tiMEOUL() veveeterretirreerereeeraeerereeeeeneeeenneeeenaeessneeessneesonaees 572

2/17/2015

DB C++ API Page ix

DbENV::rep_set_tranSPOrt() .ueeeeeeeeeeeeeereeeeeeeeesneeeesueeesneesesneeeennseesneesannnaenns 575
DDENV:ireP_SET_VIEW() teuuetieinttreieteenneerenaeeeaneeeesneesenneessnesesnassssnaeessneseennees 578
DDENV:IrEP_SEAIT() teeueeereneeeenneereneteeeneeeesneeeeneeeesnsesesneeresasessnsesesnessennsssnnes 580
DDENV:IrEP_SEAL() teeuereerneerenneerereeeenneereneeeesneeeesneeeenaeeesnesessasesonnesssnessennees 582
DBENV::rep_Stat_Print() ceeeeeeeeeerereereeeeenneereneeeeeneeeenneeeennseesnseeesneesonnseennes 589
DDENV:IrEP_SYNC() teeenntereuteeaneeeenueereneeeeaneeeesneesennsessneesesnsssenassesnsssesnsseanns 590
DbENV::repmg@r_Channel() weeeeueeeeeeeeerueeeeieeeerneeeenneeesseeeeseeessneeessaesesnaeesnes 592
DBENV::repmM@r_lOCal_STEE() uveeerreerenuteereeeerueeeenueeeseeeesneeeenneeesnassesneeesnneeens 594
DbEnV::repmgr_get_ack _POLICY() «eeeereererneeeeeeeeneeeenneeeaneeeesneeeennseesnaesennnaenns 595
DbEnv::repmgr_get_inCOMiNg_qUEUE_MAX() .eeeeereererueereneeeenneerenueessneesesnessanns 596
DbEnv::repmgr_msg_diSPatCh() ..eeeeeeirieiiiiiiiiiiiiiieiteerreereneereneeeanneeeanns 597
DbENV::repmgr_set_ack_POLICY() «eeeereererueeereeeeneeeenueeesieeeesneeeenneeesneesesneeenns 599
DbEnv::repmgr_set_inCoOming_qUEUE_MAX() .eeeeereererneereneeeenneerenneeesneeeesneeeanns 601
DDENV:irePMGI_SItE() teuueereutereneeeerneeeenueeeeneeeesneeeesnneesnsesesnseessnnessnnssesnseens 603
DbENV::repmgr_sit€_ DY _€1d() «eeeueererntereieteereeeenneeeeneeeesneeeesneeesneeeesneeecnneeans 605
DBENV::repmM@r_Sit@_LIST() cueeeeereerriueerereeeeneerereeerereeeesneereneeeesneeeesneesonnseennes 606
DBENV:irePMGr_SEAIT() teveeereneeeenneerereeeeeeeeerueeeeneeeesneeesnaeessneeessneeesnnsesoneens 608
DBENV:irePMGr_SEAT() veveeeeeneeeeeneerenuteeeneeeenneeeenneeesnseeesneesesneeesnsssesneesennnanes 611
DbENV::repmgr_stat_Print() coveeeeeeerereeereieeiereeerereeeesneeeeneeeeoneeessneeesnaeesaneens 614
3] 03] | (=T el (o 1 =T (T 615
DBENV: tXN_aPPliEA() +eerttieinteiritieiitteereeeeneeeeneeeeenaeeesneeessaeeesnaeessneeesnnees 616
DbTXN::Set_COMMIt_tOKEN() tevnrietetiiiiiiie ittt teeeiieeeeeeenaneeeeeeennnseeeeeanns 618
12. The DbSequence Handlec.ciiiieiiiiiiiiiiiiiiiiiiiiiiiiiereieeeneeeenaeeaaneeennnees 619
Sequences and Related Methodscceeiiiiieiiiiiiiiiiiiiiiiiiiiiiieiieieeieeeeneeeaneen 620
D= e (1< g Lol PP 621
DbSEQUENCE:ICLOSE() vuveerenntereneteeneerenneeeeneeeesneeresaeeesnsesesneesesnseesnsesennessanns 623
DDSEQUENCEIIGEL() veenrrtrenntereeteeneerenneereneteesneerenneersneeeesneesennesssnseeesnsesanns 624
DbSequence::get_CaChESIZE() .veeerrrierietrereeeeieeeeieeeeereeeesneeeeraeeesneeeesneeesnnees 626
DbSequUENCE::GEt_ADP() tertererntirnetrenneereretieneerenneerereeeesneesesneessnnseesneesannes 627
DbSequenCe::Get_flagS() «eeeereeeeereererueeerieeeerieeeenueeesieeeesneeesnneeessaeeesnnesannaens 628
DbSEqUENCE:IGEE_KEY() uetreneerernteereeeenneeeerneeesieeeesneeessneeesnaesssnasessnesesnnnens 629
DbSeqUENCE::GEL_FANZGE() uvererrtereneerenneerereeeeaneerenneerenaeeesneeeenneeesnnseesneesennes 630
DbSequence::initial_ValUE() ...eeereeierieeeritierieeeiieeeenneeeeieeeeeneeessneeesnneeeennees 631
DbSEQUENCEIIOPEN() tueteeneerenntereneteenneerenneereneeeesneesenneersnsesesnessennseesnsasanns 632
DbSEQUENCE:IMEMOVE() turetrenteeenteeeeeeeaneeeenneeesnaeeesnaeeesneeessassesnasessnesesnnees 634
DbSequence::Set_CaChESIZE() .veeerrrierreerereeeeineeeeieeeeeieeeenneeesnaeeesneeessnesesnnees 636
DbSequeNCe::SEt_flagS() «eeeereeeeeneeeerueeeereeeereeeenneeesieeeesneeessneeesnnseesnaeesnnaens 637
DbSeqUENCE::SEL_FANZGE() ueerernterrneererneeeereeeesneeresneerenaeeesneesesnsessnnseesnsssannes 638
DbSEQUENCE:ISTAL() weerrrerennteereerennteeereeeenneeresneeeaneeeesneeessneeesnsssesnssesnnneenns 639
DbSequenCe::Stat_PriNt() «eeveeeeereeeereeeerueeeeneeeenueeeenueeesneeeesneeeesnseesnsssennneens 641
13. The DBTXN Handle ...eiiieiiiiiiiii i et e et eeie e renaeeaaneeeanneesonnesnnneens 642
Transaction Subsystem and Related Methodsccevvieiiiiiiiiiiiiiiiiiiiiiiiieiieeanes 643
Db::get_transaCtional() «eveeeeeeeneeiereeeeiuteenieeeenneeeenneeesneeeesneeeenneeesneeeenneeenns 644
DbENV::CdSGroUp_DEZiN() weeeenetieietiriietiiietieieeeaeererneeeeneeeesneeesnneesonneesnneens 645
DBENV::GET_ EX_IMAX() tuvteenneerenueereeeeesneerenaeereneeeesneesenseeesnsesesnessennseesnsasanns 646
DbENV::get tX_tiMeStAMP() teveeerrretrerneereneeeerneeeereeeeereeeenneeeenaeeesneeessneesonaees 647
DDENV::SEE X MAX() teenrnreeereneineeeeeeeennneeeeeeeessseeeeesssnsseseeeesnssesseesssnsesseenns 648
DbENV::set_tX_tiMeStAMP() teueeerrneeierneereneteereeeeneeeeeneeeesneeeenaeessneeesnneesonnees 650
3] 2\ W T =Tl o) =]) 651

2/17/2015

DB C++ API Page x

DBENV:IEXN_DEGIN() teuretreintirittieiterereteeaeeeenneereneeeesneesesneesenneeesneesenneeeanes 653

DbENV::tXN_CheCKPOTNET() uvereetirietiiitereietieieereieeeeereeeenneeeenaeessneeeenaeesonnens 657
D] 2 g T -1) T 659
DBENV::tXN_StAt_PriNT() ueeeeueeeeeererueeeeieeeeeieeeesneeessneeeseeeseneeessneeesnnssesnnens 663
3]0l (g BE= 1o Yo o o T PPN 664
D] o) (g B (o] 11011 01 1 ¥ (P 665
B0l (g B |1 oF- U [TR PPN 668
DDTXN:1GET_NAME() tuetieneeriieteeneerenneeeeeeeenneeeeraeeesneeeesneeesnnesssnseessnsssonnens 670
DDTXN:1GET_PriOMTEY () veveeeeneerenuteeeeeeenneeeerueeeeneeeeeneeeesnseesaseesnseessnneesnnesnns 671
3]0 3 157 e [PN 672
DD XN IPIEPAIE() wevnuteenetrenneerenaeeeaneeeesaeeseneeeesneeeesasessnseessnssesnsessnneesnnes 673
B0l (g B =] T .41 (PPN 675
DDTXN::SEE_PriOMTEY () voveeeerneeeenuteeaneeeenneeeenueeeeeeeesneeeesaeeesnaesesnseessnssesnnnenns 676
B0l (g B =] .0 1o T UL o T P 677
14. Binary Large ODJECES ..iiueiitiiitiiitiiitiiitiiit et ieitietietteerietiieeraeesneeeneeanaenns 679
BLOBs and Related Methodscoiiiiiiiiiiiiiiiiiiiiiiiiiiiiii it eeeiieeeeeeenas 680
D)o Bd=L] il o1 U] s J | [I PP PP PP 681
Db::get_blob_threshold() ..eeeeeeeieiieiiiiiriiiiii i eiieteeieerenaeeeseerenneeeanes 682
3] o Bl o1 o] o e 1 f (T PN 683
Db::set_blob_threshold() .ueeeeeeiieitiiiiiiiii it et eeeiieeeeeiaeeeeeanns 684
D] Toba | o Y 4 =T 11 o 1 TP PN 686
(3] 01 1 =T= Y0 B ol (o 3-Y = T PN 688
D01y A (== 10 B == Lo [P 689
B0y == 10 B 4= PPN 691
B0y == Y0 A L = T PN 692
DbENV::get_Blob_dir() «ieveeireieiiiiiiiiiiiiiiieeeiteeaneerenaeeeaeeeanneesenneeenneens 694
DbEnv::get_blob_threshold() cie.eeieeeiiiiiiiiiiii i eieieeeeneerenneeaanas 695
D] o] 2\ Y il o] (o] o e | o) T PPN 696
DbENV::set_blob_threshold() .voeeeeeeeiiiiiiiiiiiiiiiiii ittt et it teeeeiaeeeeeanns 697
A. Berkeley DB Command Line ULIlItieS ...oceevriiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieiienneenneens 699
Uil veeiittiii it ri i it et et e et eeeaeeeeeeeeanaesanneeeanneeesneesenneessnnsennnes 700
oo T Tl o1 1 T PPN 701
(oo el T=Tel (s 7o) 1| A PP 703
oo Ja [T Vo | Uo o - QR PP PPN 705
o[oJa (011 0 T P PP PP 707
oo 3 Lo] T Tel (¥ o J P PP 711
oo T o T- Vo [PP PPN 714
oo T (o T =] | Y PP 719
oo 30T 101 Uo - S PP 722
oo T (=T el0) Y PPN 724
(oo T (=] o] A [of- | - R PP 727
oo o M eloTa [=F 7] o H PP 729
a0« | S PP 735
oo T - Y A PO PPN 737
oo T AT 1= PP PP 741
(o[o TN o= - Lo [I PP PPt 742
o =] 1 YA PP 744
SO Lttt ii ittt ettt e et et et e aaeaaes 746
B. DB_CONFIG Parameter ReferenCe ..uviiuiiiiiiiiiiiiii ittt et e eiie e eeeaaaas 747

2/17/2015 DB C++ API Page xi

DB_CONFIG Parametersceieeeeeeretrieenaneeerreersnneesseessanneesseessnnsessesssansesseees 148
F o [e =1 - W« | | S O PP PP PP 410
MUEEX_SET_aligN tiueiiiiitiiiii it ieiiieiieeeiteeeieeeenneeeaneeeesneesasneessnnssasneeeas 701
MUEEX_SET_INCIremMENT ..oiiiiiiiiiiiiiiiiitieeiiaeterreeeianreesseasnnneessesssansessseanans /D2
MUEEX_SET_IMAX . euetttiiieitttireeerneeereenaeeeseeesnaneesssessansesssessnnsssssssssansassses /93
MUEEX_SET_taS_SPINS tunnriiiiiiiiiiiiiiiiiitieeeiireereeannnneesseessnnnessssansnnsasssess 104
TEP_SET_CLOCKSKEW .uviiiitiiiitiiii ittt ieieiieeeeneeeeneeeanneseenaeessnesssnasssonaees 7DD
TEP_SEL _CONTIG tiiiiiiiiiit it i i ieii ettt eeeeeeenaeeeenaeeesneessnassssneessnaseeans 100
o I Al 11111 | A PP PP OPPROPNY 4o 4
=] o T W 0] =S PR 4o
(€< o =] il o] (o] 1 oY A PP 491
<] o T W =Te (VT A P 4 o 0
=] o T v 1 =0T | PP 4 o X
repmgr_set_aCk_POLICY ..uiiiieiiiiiiiiiiiiiii i ieiieeieeeenneerenaeeeeneeesnneesanneenes 162
repmgr_set_inComing_qQUEUE_MAXveivueiriinieriinieiineeeisneesesnsesssacessecsennees 703
=] 0] 0= Y 1 = Y 4 o 7|
Y] il of- Lol 1 1= 74 P PP POPP PP 4<%
SEE_CACNE_MAX tiiiiitiiiittieiittieiteeeieteeeeeeennteeenneeesneesesnseesnaesesnsesasnsesanaeees 100
i o (- L=« || O TP PPN 4 - V4
Yl =Y - T U= o OO PP 4 <
Y =T L PP PP OPPPPPPRRY 4 1)
set_intermediate_dir_modeciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiieeeeieeeenneeeanaeenens 171
Y Vo 1 4= O PP PP SPR &7 2
Y A V-« | PP PP PPPPPPOY &7 4
Y VI 1 (=100 Lo o [P PP 72
Y V1 - G P PP PPP PP & 42
SEt_lG rEZIONMAX .uvireeiieittieiteeiieteeneeeenuteeaneeeesneeeesneeessesesnseessnseesneesaes 170
Y= e (= (=Tt A PP PRORY 4
SEt_LK_MaX_LOCKEIS .uueiiiintiiiiiii it ieeieiieeeeeteeeneeeesneeeenneeesnaeeasneesannes 118
SEt_LK_MaX_LOCKS teunueiiiitieiitiiiieeieeiteeeteeennteeaneeeenneeeennseesnnssssnneesnnees 179
set_LK_MaX_0bJeCES wivireiiiiii ittt r i eri e re e eneeeanneeeanaeeaes 180
Y L o - 14 o] o PP PP PP £: 1
(o= BY=) il olo) 1) i - S P PP PPN £ . 72
Set_MP_MaX_OPENTA weiiieiiiitiiiitieiieieiteeereteeaeereraeeesneeeasnessenassesneesanneees 183
L o 0] o T 1 4 = D 1 = P £ -
= 0] 0 0 F= 0 1) Y £:14]
Yo o= g T 1 - UL PP PO PPPRPPRY £
L 21 T G A O PP PP PPPPRPINY £ 74
set_thread_CouNtciiiiiiiii ittt e e eieeieeeesneeeennesasneesanneees 188
L1 o 1= 0T U PP £: 2
Y 10 0 e | | T PP PP PPPRNY 4°
L1 o 0 1 1 = G PP A°X
L] 1 o To - T PP PP PO PPPPPRY 4°) 2

2/17/2015

DB C++ API Page xii

Preface

Welcome to Berkeley DB 12c¢ Release 1 (DB). This document describes the C++ API for DB
library version 12.1.6.1. It is intended to describe the DB API, including all classes, methods,
and functions. As such, this document is intended for C++ developers who are actively writing
or maintaining applications that make use of DB databases.

2/17/2015 DB C++ API Page xiii

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example:
"Db: :open() is a Db class method."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory.”

Program examples are displayed in a monospaced font on a shaded background. For example:

typedef struct vendor {

char name[MAXFIELD]; // Vendor name
char street[MAXFIELD]; // Street name and number
char city[MAXFIELD]; // City
char state[3]; // Two-digit US state code
char zipcode[6]; // US zipcode
char phone_number[13]; // Vendor phone number
} VENDOR;
Note

Finally, notes of interest are represented using a note block such as this.

2/17/2015 DB C++ API Page xiv

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a DB application:

» Getting Started with Berkeley DB for C++

» Getting Started with Transaction Processing for C++

» Berkeley DB Getting Started with Replicated Applications for C++
» Berkeley DB C API Reference Guide

» Berkeley DB STL API Reference Guide

» Berkeley DB TCL API Reference Guide

» Berkeley DB Installation and Build Guide

» Berkeley DB Programmer's Reference Guide

» Berkeley DB Getting Started with the SQL APIs

To download the latest Berkeley DB documentation along with white papers and other
collateral, visit http://www.oracle.com/technetwork/indexes/documentation/index.html.

For the latest version of the Oracle Berkeley DB downloads, visit http://www.oracle.com/
technetwork/database/database-technologies/berkeleydb/downloads/index.html.

Contact Us

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB at: https://forums.oracle.com/forums/forum.jspa?forumiD=271, or for Oracle
Berkeley DB High Availability at: https://forums.oracle.com/forums/forum.jspa?forumiD=272.

For sales or support information, email to: berkeleydb-info_us@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

2/17/2015 DB C++ API Page xv

http://docs.oracle.com/cd/E17076_02/html/gsg/CXX/BerkeleyDB-Core-Cxx-GSG.pdf
http://docs.oracle.com/cd/E17076_02/html/gsg_txn/CXX/BerkeleyDB-Core-Cxx-Txn.pdf
http://docs.oracle.com/cd/E17076_02/html/gsg_db_rep/CXX/Replication_CXX_GSG.pdf
http://docs.oracle.com/cd/E17076_02/html/api_reference/C/BDB-C_APIReference.pdf
http://docs.oracle.com/cd/E17076_02/html/api_reference/STL/BDB-STL_APIReference.pdf
http://docs.oracle.com/cd/E17076_02/html/api_reference/TCL/BDB-TCL_APIReference.pdf
http://docs.oracle.com/cd/E17076_02/html/installation/BDB_Installation.pdf
http://docs.oracle.com/cd/E17076_02/html/programmer_reference/BDB_Prog_Reference.pdf
http://docs.oracle.com/cd/E17076_02/html/bdb-sql/BDB-SQL-Guide.pdf
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html
https://forums.oracle.com/forums/forum.jspa?forumID=271
https://forums.oracle.com/forums/forum.jspa?forumID=272
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

Chapter 1. Introduction to Berkeley DB APIs

Welcome to the Berkeley DB API Reference Manual for C++.

DB is a general-purpose embedded database engine that is capable of providing a wealth of
data management services. It is designed from the ground up for high-throughput applications
requiring in-process, bullet-proof management of mission-critical data. DB can gracefully scale
from managing a few bytes to terabytes of data. For the most part, DB is limited only by your
system’s available physical resources.

This manual describes the various APls and command line utilities available for use in the DB
library.

For a general description of using DB beyond the reference material available in this manual,
see the Getting Started Guides which are identified in this manual's preface.

This manual is broken into chapters, each one of which describes a series of APIs designed
to work with one particular aspect of the DB library. In many cases, each such chapter is
organized around a "handle", or class, which provides an interface to DB structures such as
databases, environments or locks. However, in some cases, methods for multiple handles
are combined together when they are used to control or interface with some isolated DB
functionality. See, for example, the The DbLsn Handle (page 400) chapter.

Within each chapter, methods, functions and command line utilities are organized
alphabetically.

2/17/2015

DB C++ API Page 1

Chapter 2. The Db Handle

The Db is the handle for a single Berkeley DB database. A Berkeley DB database provides

a mechanism for organizing key-data pairs of information. From the perspective of some
database systems, a Berkeley DB database could be thought of as a single table within a larger
database.

You create a Db handle using the Db (page 21) constructor. For most database activities, you
must then open the handle using the Db::open() (page 71) method. When you are done with
them, handles must be closed using the Db::close() (page 13) method.

Alternatively, you can create a Db and then rename, remove or verify the database
without performing an open. See Db::rename() (page 83), Db::remove() (page 81) or
Db::verify() (page 162) for information on these activities.

It is possible to create databases such that they are organized within a database environment.
Environments are optional for simple Berkeley DB applications that do not use transactions,
recovery, replication or any other advanced features. For simple Berkeley DB applications,
environments still offer some advantages. For example, they provide some organizational
benefits on-disk (all databases are located on disk relative to the environment). Also, if you
are using multiple databases, then environments allow your databases to share a common in-
memory cache, which makes for more efficient usage of your hardware's resources.

See DbEnv for information on using database environments.

You specify the underlying organization of the data in the database (e.g. BTree, Hash, Queue,
and Recno) when you open the database. When you create a database, you are free to specify
any of the available database types. On subsequent opens, you must either specify the

access method used when you first opened the database, or you can specify DB_UNKNOWN in
order to have this information retrieved for you. See the Db::open() (page 71) method for
information on specifying database types.

2/17/2015

DB C++ API Page 2

Library Version 12.1.6.1

The Db Handle

Database and Related Methods

Database Operations

Description

Db::associate() Associate a secondary index

Db::associate_foreign() Associate a foreign index

Db::close() Close a database

Db::compact() Compact a database

Db Create a database handle

Db::del() Delete items from a database

Db::err() Error message

Db::exists() Return if an item appears in a database

Db::fd() Return a file descriptor from a database

Db::get() Get items from a database

Db::get_byteswapped() Return if the underlying database is in host
order

Db::get_dbname() Return the file and database name

Db::get_multiple() Return if the database handle references
multiple databases

Db::get_open_flags() Returns the flags specified to Db::open

Db::get_type() Return the database type

Db::join() Perform a database join on cursors

Db::key_range() Return estimate of key location

Db::open() Open a database

Db::put() Store items into a database

Db::remove() Remove a database

Db::rename() Rename a database

Db::set_priority(), Db::get_priority() Set/get cache page priority

Db::stat() Database statistics

Db::stat_print() Display database statistics

Db::sync() Flush a database to stable storage
Db::truncate() Empty a database

Db::upgrade() Upgrade a database

Db::verify() Verify/salvage a database

Db::cursor() Create a cursor handle

Database Configuration

Db::get_partition_callback() Return the database partition callback

2/17/2015

DB C++ API

Page 3

Library Version 12.1.6.1

The Db Handle

Database Operations

Description

Db::get_partition_keys() Returns the array of keys used for the
database partition

Db::set_alloc() Set local space allocation functions

Db::set_cachesize(), Db::get_cachesize() Set/get the database cache size

Db:

:set_create_dir(), Db::get_create_dir()

Set/get the directory in which a database is
placed

Db:

:set_dup_compare()

Set a duplicate comparison function

Db:

:set_encrypt(), Db::get_encrypt_flags()

Set/get the database cryptographic key

Db:

:set_errcall()

Set error message callback

Db:

:set_errfile(), Db::get_errfile()

Set/get error message FILE

Db:

:set_error_stream()

Set C++ ostream used for error messages

Db:

:set_errpfx(), Db::get_errpfx()

Set/get error message prefix

Db:

:set_feedback()

Set feedback callback

Db:

:set_flags(), Db::get_flags()

Set/get general database configuration

Db:

:set_Lk_exclusive(), Db::get_Lk_exclusive()

Set/get exclusive database locking

Db:

:set_lorder(), Db::get_lorder()

Set/get the database byte order

Db:

:set_message_stream()

Set C++ ostream used for informational
messages

Db:

:set_msgcall()

Set informational message callback

Db:

:set_msgfile(), Db::get_msgfile()

Set/get informational message FILE

Db:

:set_pagesize(), Db::get_pagesize()

Set/get the underlying database page size

Db:

:set_partition()

Set database partitioning

Db:
Db:

:set_partition_dirs(),
:get_partition_dirs()

Set/get the directories used for database
partitions

Btree/Recno Configuration

Db

:set_append_recno()

Set record append callback

Db:

:set_bt_compare()

Set a Btree comparison function

Db:

:set_bt_compress()

Set Btree compression functions

Db:

:set_bt_minkey(), Db::get_bt_minkey()

Set/get the minimum number of keys per
Btree page

Db:

:set_bt_prefix()

Set a Btree prefix comparison function

Db:

:set_re_delim(), Db::get_re_delim()

Set/get the variable-length record delimiter

Db:

:set_re_len(), Db::get_re_len()

Set/get the fixed-length record length

Db:

:set_re_pad(), Db::get_re_pad()

Set/get the fixed-length record pad byte

Db:

:set_re_source(), Db::get_re_source()

Set/get the backing Recno text file

Hash Configuration

2/17/2015

DB C++ API

Page 4

Library Version 12.1.6.1

The Db Handle

Database Operations

Description

Db::set_h_compare()

Set a Hash comparison function

Db::set_h_ffactor(), Db::get_h_ffactor()

Set/get the Hash table density

Db::set_h_hash()

Set a hashing function

Db::set_h_nelem(), Db::get_h_nelem()

Set/get the Hash table size

Queue Configuration

Db::set_qg_extentsize(),
Db::get_qg_extentsize()

Set/get Queue database extent size

Heap

Db::set_heapsize(), Db::get_heapsize()

Set/get the database heap size

Db::set_heap_regionsize(),
Db::get_heap_regionsize()

Set/get the database region size

DbHeapRecordld

Database Utilities

db_copy

Copy a named database to a target directory

2/17/2015

DB C++ API

Page 5

Library Version 12.1.6.1 The Db Handle

Db::associate()

#include <db_cxx.h>

int
Db::associate(DbTxn *txnid, Db *secondary,
int (*callback) (Db *secondary,
const Dbt *key, const Dbt *data, Dbt *result), u_int32_t flags);

The Db: :associate() function is used to declare one database a secondary index for a
primary database. The Db handle that you call the associate() method from is the primary
database.

After a secondary database has been "associated” with a primary database, all updates to the
primary will be automatically reflected in the secondary and all reads from the secondary

will return corresponding data from the primary. Note that as primary keys must be unique

for secondary indices to work, the primary database must be configured without support for
duplicate data items. See Secondary Indices in the Berkeley DB Programmer's Reference Guide
for more information.

The Db: :associate() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 653); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 645); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected.

secondary

The secondary parameter should be an open database handle of either a newly created and
empty database that is to be used to store a secondary index, or of a database that was
previously associated with the same primary and contains a secondary index. Note that it is
not safe to associate as a secondary database a handle that is in use by another thread of
control or has open cursors. If the handle was opened with the DB_THREAD flag it is safe to
use it in multiple threads of control after the Db: :associate() method has returned. Note
also that either secondary keys must be unique or the secondary database must be configured
with support for duplicate data items.

callback

The callback parameter is a callback function that creates the set of secondary keys
corresponding to a given primary key and data pair.

The callback parameter may be NULL if both the primary and secondary database handles
were opened with the DB_RDONLY flag.

2/17/2015

DB C++ API Page 6

../../programmer_reference/am_second.html

Library Version 12.1.6.1 The Db Handle

The callback takes four arguments:

¢ secondary

The secondary parameter is the database handle for the secondary.

o key

The key parameter is a Dbt referencing the primary key.

e data

The data parameter is a Dbt referencing the primary data item.

e result

The result parameter is a zeroed Dbt in which the callback function should fill in data and
size fields that describe the secondary key or keys.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

The result Dbt can have the following flags set in its flags field:

e DB_DBT_APPMALLOC

If the callback function needs to allocate memory for the result data field (rather than
simply pointing into the primary key or datum), DB_DBT_APPMALLOC should be set in the
flags field of the result Dbt, which indicates that Berkeley DB should free the memory when
it is done with it.

DB_DBT_MULTIPLE

To return multiple secondary keys, DB_DBT_MULTIPLE should be set in the flags field of

the result Dbt, which indicates Berkeley DB should treat the size field as the number of
secondary keys (zero or more), and the data field as a pointer to an array of that number of
Dbts describing the set of secondary keys.

When multiple secondary keys are returned, keys may not be repeated. In other words,
there must be no repeated record numbers in the array for Recno and Queue databases,
and keys must not compare equally using the secondary database's comparison function for
Btree and Hash databases. If keys are repeated, operations may fail and the secondary may
become inconsistent with the primary.

The DB_DBT_APPMALLOC flag may be set for any Dbt in the array of returned Dbt's to
indicate that Berkeley DB should free the memory referenced by that particular Dbt's data
field when it is done with it.

2/17/2015

DB C++ API Page 7

Library Version 12.1.6.1 The Db Handle

The DB_DBT_APPMALLOC flag may be combined with DB_DBT_MULTIPLE in the result Dbt's
flag field to indicate that Berkeley DB should free the array once it is done with all of the
returned keys.

In addition, the callback can optionally return the following special value:
e DB_DONOTINDEX

If any key/data pair in the primary yields a null secondary key and should be left out of the
secondary index, the callback function may optionally return DB_DONOTINDEX. Otherwise,
the callback function should return 0 in case of success or an error outside of the Berkeley
DB name space in case of failure; the error code will be returned from the Berkeley DB call
that initiated the callback.

If the callback function returns DB_DONOTINDEX for any key/data pairs in the primary
database, the secondary index will not contain any reference to those key/data pairs, and
such operations as cursor iterations and range queries will reflect only the corresponding
subset of the database. If this is not desirable, the application should ensure that the
callback function is well-defined for all possible values and never returns DB_DONOTINDEX.

Returning DB_DONOTINDEX is equivalent to setting DB_DBT_MULTIPLE on the result Dbt and
setting the size field to zero.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

e DB_CREATE

If the secondary database is empty, walk through the primary and create an index to it in
the empty secondary. This operation is potentially very expensive.

If the secondary database has been opened in an environment configured with transactions,
the entire secondary index creation is performed in the context of a single transaction.

Care should be taken not to use a newly-populated secondary database in another thread of
control until the Db: :associate() call has returned successfully in the first thread.

If transactions are not being used, care should be taken not to modify a primary database
being used to populate a secondary database, in another thread of control, until the
Db::associate() call has returned successfully in the first thread. If transactions are being
used, Berkeley DB will perform appropriate locking and the application need not do any
special operation ordering.

e DB_IMMUTABLE_KEY
Specifies the secondary key is immutable.

This flag can be used to optimize updates when the secondary key in a primary record will
never be changed after the primary record is inserted. For immutable secondary keys, a

2/17/2015

DB C++ API Page 8

Library Version 12.1.6.1 The Db Handle

best effort is made to avoid calling the secondary callback function when primary records
are updated. This optimization may reduce the overhead of update operations significantly
if the callback function is expensive.

Be sure to specify this flag only if the secondary key in the primary record is never changed.
If this rule is violated, the secondary index will become corrupted, that is, it will become
out of sync with the primary.

Errors

The Db: :associate() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EINVAL

If the secondary database handle has already been associated with this or another database
handle; the secondary database handle is not open; the primary database has been configured
to allow duplicates; or if an invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

2/17/2015

DB C++ API Page 9

Library Version 12.1.6.1 The Db Handle

Db::associate_foreign()

#include <db_cxx.h>

int

DB::associate_foreign(Db *secondary,,
int (*callback) (Db *secondary,
const Dbt *key, Dbt *data, const Dbt *foreignkey, int *changed),
u_int32_t flags);

The Db: :associate_foreign() function is used to declare one database a foreign constraint
for a secondary database. The Db handle that you call the associate_foreign() method
from is the foreign database.

After a foreign database has been "associated” with a secondary database, all keys inserted
into the secondary must exist in the foreign database. Attempting to add a record with a
foreign key that does not exist in the foreign database will cause the put method to fail and
return DB_FOREIGN_CONFLICT.

Deletions in the foreign database affect the secondary in a manner defined by the flags
parameter. See Foreign Indices in the Berkeley DB Programmer’s Reference Guide for more
information.

The Db: :associate_foreign() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

secondary

The secondary parameter should be an open database handle of a database that contains a
secondary index who's keys also exist in the foreign database.

callback

The callback parameter is a callback function that nullifies the foreign key portion of a data
Dbt.

The callback parameter must be NULL if either DB_FOREIGN_ABORT or DB_FOREIGN_CASCADE
is set.

The callback takes four arguments:
e secondary

The secondary parameter is the database handle for the secondary.
* key

The key parameter is a Dbt referencing the primary key.

e data

2/17/2015

DB C++ API Page 10

../../programmer_reference/am_foreign.html

Library Version 12.1.6.1 The Db Handle

The data parameter is a Dbt referencing the primary data item to be updated.
+ foreignkey

The foreignkey parameter is a Dbt referencing the foreign key which is being deleted.
» changed

The changed parameter is a pointer to a boolean value, indicated whether data has
changed.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

flags
The flags parameter must be set to one of the following values:
« DB_FOREIGN_ABORT

Abort the deletion of a key in the foreign database and return DB_FOREIGN_CONFLICT
if that key exists in the secondary database. The deletion should be protected by a
transaction to ensure database integrity after the aborted delete.

e DB_FOREIGN_CASCADE

The deletion of a key in the foreign database will also delete that key from the secondary
database (and the corresponding entry in the secondary's primary database.)

e DB_FOREIGN_NULLIFY

The deletion of a key in the foreign database will call the nullification function passed to
associate_foreign and update the secondary database with the changed data.

Errors

The Db: :associate_foreign() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

2/17/2015

DB C++ API Page 11

Library Version 12.1.6.1 The Db Handle

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EINVAL

If the foreign database handle is a secondary index; the foreign database handle has been
configured to allow duplicates; the foreign database handle is a renumbering recno database;
callback is configured and DB_FOREIGN_NULLIFY is not; DB_FOREIGN_NULLIFY is configured
and callback is not.

Class
Db

See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 12

Library Version 12.1.6.1 The Db Handle

Db::close()

#include <db_cxx.h>

int
Db::close(u_int32_t flags);

The Db: :close() method flushes cached database information to disk, closes any open
cursors, frees allocated resources, and closes underlying files. When the close operation for a
cursor fails, the method returns a non-zero error value for the first instance of such an error,
and continues to close the rest of the cursors and database handles.

Although closing a database handle will close any open cursors, it is recommended that
applications explicitly close all their Dbc handles before closing the database. The reason why
is that when the cursor is explicitly closed, the memory allocated for it is reclaimed; however,
this will not happen if you close a database while cursors are still opened.

The same rule, for the same reasons, hold true for DbTxn handles. Simply make sure you close
all your transaction handles before closing your database handle.

Because key/data pairs are cached in memory, applications should make a point to always
either close database handles or sync their data to disk (using the Db::sync() (page 156)
method) before exiting, to ensure that any data cached in main memory are reflected in the
underlying file system.

When called on a database that is the primary database for a secondary index, the primary
database should be closed only after all secondary indices referencing it have been closed.

When multiple threads are using the Db concurrently, only a single thread may call the
Db: :close() method.

The Db handle may not be accessed again after Db: :close() is called, regardless of its
return.

If you do not close the Db handle explicitly, it will be closed when the environment handle
that owns the Db handle is closed.

The Db: :close() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success. The error values that
Db: :close() method returns include the error values of Dbc: :close() and the following:

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

2/17/2015

DB C++ API Page 13

Library Version 12.1.6.1 The Db Handle

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See Db::set_lk_exclusive() (page
126) for more information.

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.
Parameters

flags

The flags parameter must be set to 0 or be set to the following value:

e DB_NOSYNC

Do not flush cached information to disk. This flag is a dangerous option. It should be set only
if the application is doing logging (with transactions) so that the database is recoverable
after a system or application crash, or if the database is always generated from scratch
after any system or application crash.

It is important to understand that flushing cached information to disk only minimizes the
window of opportunity for corrupted data. Although unlikely, it is possible for database
corruption to happen if a system or application crash occurs while writing data to the
database. To ensure that database corruption never occurs, applications must either: use
transactions and logging with automatic recovery; use logging and application-specific
recovery; or edit a copy of the database, and once all applications using the database have
successfully called Db: : close(), atomically replace the original database with the updated

copy.
Note that this flag only works when the database has been opened using an environment.
Errors

The Db: :close() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL
An invalid flag value or parameter was specified.

The error messages returned for the first error encountered when Db: : close() method closes
any open cursors include:

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

2/17/2015

DB C++ API Page 14

Library Version 12.1.6.1 The Db Handle

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See Db::set_Llk_exclusive() (page
126) for more information.

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.
Class

Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 15

Library Version 12.1.6.1 The Db Handle

Db::compact()

#include <db_cxx.h>

int
Db: :compact(DbTxn *txnid,
Dbt *start, Dbt *stop, DB_COMPACT *c_data, u_int32_t flags, Dbt *end);

The Db: : compact() method compacts Btree, Hash, and Recno access method databases, and
optionally returns unused Btree, Hash or Recno database pages to the underlying filesystem.

The Db: : compact() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 653); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 645); otherwise NULL.

If a transaction handle is supplied to this method, then the operation is performed using that
transaction. In this event, large sections of the tree may be locked during the course of the
transaction.

If no transaction handle is specified, but the operation occurs in a transactional database,
the operation will be implicitly transaction protected using multiple transactions. These
transactions will be periodically committed to avoid locking large sections of the tree. Any
deadlocks encountered cause the compaction operation to be retried from the point of the
last transaction commit.

start

If non-NULL, the start parameter is the starting point for compaction. For a Btree or Recno
database, compaction will start at the smallest key greater than or equal to the specified key.
For a Hash database, the compaction will start in the bucket specified by the integer stored in
the key. If NULL, compaction will start at the beginning of the database.

stop

If non-NULL, the stop parameter is the stopping point for compaction. For a Btree or Recno
database, compaction will stop at the page with the smallest key greater than the specified
key. For a Hash database, compaction will stop in the bucket specified by the integer stored in
the key. If NULL, compaction will stop at the end of the database.

c_data

If non-NULL, the c_data parameter contains additional compaction configuration parameters,
and returns compaction operation statistics, in a structure of type DB_COMPACT.

The following input configuration fields are available from the DB_COMPACT structure:

2/17/2015

DB C++ API Page 16

Library Version 12.1.6.1 The Db Handle

e int compact_fillpercent;
If non-zero, this provides the goal for filling pages, specified as a percentage between 1 and
100. Any page in the database not at or above this percentage full will be considered for

compaction. The default behavior is to consider every page for compaction, regardless of its
page fill percentage.

e int compact_pages;
If non-zero, the call will return after the specified number of pages have been freed, or no
more pages can be freed. The implementation does not guarantee an exact match to the
number of pages requested.

e db_timeout_t compact_timeout;

If non-zero, and no txnid parameter was specified, this parameter identifies the lock
timeout used for implicit transactions, in microseconds.

The following output statistics fields are available from the DB_COMPACT structure:
e u_int32_t compact_deadlock;

An output statistics parameter: if no txnid parameter was specified, the number of
deadlocks which occurred.

e u_int32_t compact_pages_examine;

An output statistics parameter: the number of database pages reviewed during the
compaction phase.

e u_int32_t compact_empty_buckets;

An output statistics parameter: the number of empty hash buckets that were found the
compaction phase.

e u_int32_t compact_pages_free;

An output statistics parameter: the number of database pages freed during the compaction
phase.

e u_int32_t compact_levels;

An output statistics parameter: the number of levels removed from the Btree or Recno
database during the compaction phase.

e u_int32_t compact_pages_truncated;
An output statistics parameter: the number of database pages returned to the filesystem.
flags

The flags parameter must be set to 0 or one of the following values:

2/17/2015

DB C++ API Page 17

Library Version 12.1.6.1 The Db Handle

+ DB_FREELIST_ONLY

Do no page compaction, only returning pages to the filesystem that are already free and at
the end of the file.

« DB_FREE_SPACE

Return pages to the filesystem when possible. If this flag is not specified, pages emptied as
a result of compaction will be placed on the free list for re-use, but never returned to the
filesystem.

Note that only pages at the end of a file can be returned to the filesystem. Because of the
one-pass nature of the compaction algorithm, any unemptied page near the end of the file
inhibits returning pages to the file system. A repeated call to the Db: : compact() method
with a low compact_fillpercent may be used to return pages in this case.

end

If non-NULL, the end parameter will be filled with the database key marking the end of the
compaction operation in a Btree or Recno database. This is generally the first key of the
page where the operation stopped. For a Hash database, this will hold the integer value
representing which bucket the compaction stopped in.

Errors

The Db: : compact() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See Db::set_lk_exclusive() (page
126) for more information.

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw

2/17/2015

DB C++ API Page 18

Library Version 12.1.6.1 The Db Handle

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EACCES
An attempt was made to modify a read-only database.
EINVAL
An invalid flag value or parameter was specified.
Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 19

Library Version 12.1.6.1 The Db Handle

db_copy

#include <db.h>

int

db_copy(DB_ENV *dbenv, const char *dbfile, const char *target,

const char *password);
The db_copy () routine copies the named database file to the target directory. An optional
password can be specified for encrypted database files. This routine can be used on operating
systems that do not support atomic file system reads to create a hot backup of a database
file. If the specified database file is for a QUEUE database with extents, all extent files for
that database will be copied as well.
Parameters
dbenv
An open environment handle for the environment containing the database file.
dbfile
The path name to the file to be backed up. The file name is resolved using the usual BDB
library name resolution rules.
target
The directory to which you want the database copied. This is specified relative to the current
directory of the executing process or as an absolute path.
password
Specified only if the database file is encrypted. The resulting backup file will be encrypted as
well.
2/17/2015 DB C++ API Page 20

Library Version 12.1.6.1 The Db Handle

Db

#include <db_cxx.h>

class Db {

public:
Db(DbEnv *dbenv, u_int32_t flags);
~Db();

DB *Db::get_DB();

const DB *Db::get_const_DB() const;

static Db *Db::get_Db(DB *db);

static const Db *Db::get_const_Db(const DB *db);

};

The Db handle is the handle for a Berkeley DB database, which may or may not be part of a
database environment.

Db handles are free-threaded if the DB_THREAD flag is specified to the Db::open() (page

71) method when the database is opened or if the database environment in which the
database is opened is free-threaded. The handle should not be closed while any other handle
that refers to the database is in use; for example, database handles must not be closed
while cursor handles into the database remain open, or transactions that include operations
on the database have not yet been committed or aborted. Once the Db::close() (page 13),
Db::remove() (page 81), Db::rename() (page 83), or Db::verify() (page 162) methods are
called, the handle may not be accessed again, regardless of the method's return.

The constructor creates a Db object that is the handle for a Berkeley DB database. The
constructor allocates memory internally; calling the Db::close() (page 13), Db::remove() (page
81), or Db::rename() (page 83) methods will free that memory.

Note that destroying the Db object is synonomous with calling Db: : close(9).

Each Db object has an associated DB struct, which is used by the underlying implementation
of Berkeley DB and its C-language API. The Db: : get_DB() method returns a pointer to this
struct. Given a const Db object, Db: :get_const_DB() returns a const pointer to the same
struct.

Given a DB struct, the Db: :get Db() method returns the corresponding Db object, if there is
one. If the DB object was not associated with a Db (that is, it was not returned from a call to
the Db: :get DB() method), then the result of Db: :get Db() is undefined. Given a const DB
struct, Db::get_const_Db() returns the associated const Dbobject, if there is one.

These methods may be useful for Berkeley DB applications including both C and C++ language
software. It should not be necessary to use these calls in a purely C++ application.

2/17/2015

DB C++ API Page 21

Library Version 12.1.6.1 The Db Handle

Parameters

dbenv

If no dbenv value is specified, the database is standalone; that is, it is not part of any
Berkeley DB environment.

If a dbenv value is specified, the database is created within the specified Berkeley DB
environment. The database access methods automatically make calls to the other subsystems
in Berkeley DB, based on the enclosing environment. For example, if the environment has
been configured to use locking, the access methods will automatically acquire the correct
locks when reading and writing pages of the database.

flags
The flags parameter must be set to 0 or the following value:
« DB_CXX_NO_EXCEPTION

The Berkeley DB C++ API supports two different error behaviors. By default, whenever an
error occurs, an exception is thrown that encapsulates the error information. This generally
allows for cleaner logic for transaction processing because a try block can surround a single
transaction. However, if this flag is specified, exceptions are not thrown; instead, each
individual function returns an error code.

If a dbenv value is specified, this flag is ignored, and the error behavior of the specified
environment is used instead.

Class
Db

See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 22

Library Version 12.1.6.1 The Db Handle

Db::del()

#include <db_cxx.h>

int
Db::del(DbTxn *txnid, Dbt *key, u_int32_t flags);

The Db: :del() method removes key/data pairs from the database. The key/data pair
associated with the specified key is discarded from the database. In the presence of duplicate
key values, all records associated with the designated key will be discarded.

When called on a database that has been made into a secondary index using the
Db::associate() (page 6) method, the Db: :del() method deletes the key/data pair from the
primary database and all secondary indices.

The Db: :del() method will return DB_NOTFOUND if the specified key is not in the database.
The Db: :del() method will return DB_KEYEMPTY if the database is a Queue or Recno
database and the specified key exists, but was never explicitly created by the application or
was later deleted. Unless otherwise specified, the Db: :del() method either returns a non-
zero error value or throws an exception that encapsulates a non-zero error value on failure,
and returns 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 653); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 645); otherwise NULL. If no transaction handle is specified,

but the operation occurs in a transactional database, the operation will be implicitly
transaction protected.

key

The key Dbt operated on.

flags

The flags parameter must be set to 0 or one of the following values:

e DB_CONSUME
If the database is of type DB_QUEUE then this flag may be set to force the head of the
queue to move to the first non-deleted item in the queue. Normally this is only done if the
deleted item is exactly at the head when deleted.

e DB_MULTIPLE

Delete multiple data items using keys from the buffer to which the key parameter refers.

2/17/2015

DB C++ API Page 23

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 12.1.6.1 The Db Handle

Errors

To delete records in bulk by key with the btree or hash access methods, construct
a bulk buffer in the key Dbt using DbMultipleDataBuilder (page 211). To delete
records in bulk by record number, construct a bulk buffer in the key Dbt using
DbMultipleRecnoDataBuilder (page 215) with a data size of zero.

A successful bulk delete operation is logically equivalent to a loop through each key/data
pair, performing a Db::del() (page 23) for each one.

See the DBT and Bulk Operations (page 202) for more information on working with bulk
updates.

The DB_MULTIPLE flag may only be used alone.
DB_MULTIPLE_KEY

Delete multiple data items using keys and data from the buffer to which the key parameter
refers.

To delete records in bulk with the btree or hash access methods, construct a bulk buffer
in the key Dbt using DbMultipleKeyDataBuilder (page 213). To delete records in bulk
with the recno or hash access methods, construct a bulk buffer in the key Dbt using
DbMultipleRecnoDataBuilder (page 215).

See the DBT and Bulk Operations (page 202) for more information on working with bulk
updates.

The DB_MULTIPLE_KEY flag may only be used alone.

The Db: :del() method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1.

An attempt was made to add a record to a constrained database, and the key used for
that record does not exist in the foreign key database.

DB_FOREIGN_ABORT (page 11) was declared for a foreign key database, and then
subsequently a record was deleted from the foreign key database without first removing
it from the constrained secondary database.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

2/17/2015

DB C++ API Page 24

Library Version 12.1.6.1 The Db Handle

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See Db::set_Llk_exclusive() (page
126) for more information.

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.
EACCES

An attempt was made to modify a read-only database.
EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

2/17/2015

DB C++ API Page 25

Library Version 12.1.6.1 The Db Handle

Db::err()
#include <db_cxx.h>
Db::err(int error, const char *fmt, ...);
Db::errx(const char *fmt, ...);

The DbEnv::err() (page 236), DbEnv: :errx(), Db::err() and Db: :errx() methods provide

error-messaging functionality for applications written using the Berkeley DB library.

The Db: :err() and DbEnv::err() (page 236) methods construct an error message consisting

of the following elements:

« An optional prefix string
If no error callback function has been set using the DbEnv::set_errcall() (page 300)
method, any prefix string specified using the DbEnv::set_errpfx() (page 305) method,
followed by two separating characters: a colon and a <space> character.

« An optional printf-style message
The supplied message fmt, if non-NULL, in which the ANSI C X3.159-1989 (ANSI C) printf
function specifies how subsequent parameters are converted for output.

« A separator
Two separating characters: a colon and a <space> character.

« A standard error string
The standard system or Berkeley DB library error string associated with the error value, as
returned by the DbEnv::strerror() (page 345) method.

The Db: :errx() and DbEnv: :errx() methods are the same as the Db: :err() and

DbEnv::err() (page 236) methods, except they do not append the final separator characters

and standard error string to the error message.

This constructed error message is then handled as follows:

« If an error callback function has been set (see Db::set_errcall() (page 104) and
DbEnv::set_errcall() (page 300)), that function is called with two parameters: any prefix
string specified (see Db::set_errpfx() (page 109) and DbEnv::set_errpfx() (page 305)) and
the error message.

« If a C library FILE * has been set (see Db::set_errfile() (page 106) and
DbEnv::set_errfile() (page 302)), the error message is written to that output stream.

« If a C++ ostream has been set (see DbEnv::set_error_stream() (page 304) and
Db::set_error_stream() (page 108)), the error message is written to that stream.

« If none of these output options have been configured, the error message is written to stderr,
the standard error output stream.

2/17/2015 DB C++ API Page 26

Library Version 12.1.6.1 The Db Handle

Parameters

error

The error parameter is the error value for which the DbEnv::err() (page 236) and Db: :err()
methods will display an explanatory string.

fmt

The fmt parameter is an optional printf-style message to display.
Class

Db

See Also
Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 27

Library Version 12.1.6.1 The Db Handle

Db::exists()

#include <db_cxx.h>

int
Db::exists(DbTxn *txnid, Dbt *key, u_int32_t flags);

The Db: :exists() method returns whether the specified key appears in the database.

The Db: :exists() method will return DB_NOTFOUND if the specified key is not in the
database. The Db: :exists() method will return DB_KEYEMPTY if the database is a Queue
or Recno database and the specified key exists, but was never explicitly created by the
application or was later deleted.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 653); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 645); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected.

key
The key Dbt operated on.
flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more
of the following values:

e DB_READ_COMMITTED

Configure a transactional read operation to have degree 2 isolation (the read is not
repeatable).

e DB_READ_UNCOMMITTED

Configure a transactional read operation to have degree 1 isolation, reading modified
but not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not
specified when the underlying database was opened.

« DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured.
Setting this flag can eliminate deadlock during a read-modify-write cycle by acquiring the
write lock during the read part of the cycle so that another thread of control acquiring a
read lock for the same item, in its own read-modify-write cycle, will not result in deadlock.

2/17/2015

DB C++ API Page 28

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 12.1.6.1 The Db Handle

Because the Db: :exists () method will not hold locks across Berkeley DB calls in non-
transactional operations, the DB_RMW flag to the Db: :exists () call is meaningful only in
the presence of transactions.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 29

Library Version 12.1.6.1 The Db Handle

Db::fd()

#include <db_cxx.h>

int
Db::fd(int *fdp);

The Db: : £d() method provides access to a file descriptor representative of the underlying
database. A file descriptor referring to the same file will be returned to all processes that call
Db::open() (page 71) with the same file parameter.

This file descriptor may be safely used as a parameter to the fcntl(2) and flock(2) locking
functions.

The Db: :£d() method only supports a coarse-grained form of locking. Applications should
instead use the Berkeley DB lock manager where possible.

The Db: :fd() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

fdp

The fdp parameter references memory into which the current file descriptor is copied.
Class

Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 30

Library Version 12.1.6.1 The Db Handle

Db::get()

#include <db_cxx.h>

int

Db::get(DbTxn *txnid, Dbt *key, Dbt *data, u_int32_t flags);

int

Db: :pget(DbTxn *txnid, Dbt *key, Dbt *pkey, Dbt *data, u_int32_t flags);
The Db: :get() method retrieves key/data pairs from the database. The address and length of
the data associated with the specified key are returned in the structure to which data refers.
In the presence of duplicate key values, Db: :get () will return the first data item for the
designated key. Duplicates are sorted by:
« Their sort order, if a duplicate sort function was specified.
» Any explicit cursor designated insertion.
+ By insert order. This is the default behavior.
Retrieval of duplicates requires the use of cursor operations. See Dbc::get() (page 183) for
details.
When called on a database that has been made into a secondary index using the
Db::associate() (page 6) method, the Db: :get() and Db: :pget () methods return the key
from the secondary index and the data item from the primary database. In addition, the
Db: :pget() method returns the key from the primary database. In databases that are not
secondary indices, the Db: :pget () method will always fail.
The Db: :get() method will return DB_NOTFOUND if the specified key is not in the database.
The Db: :get() method will return DB_KEYEMPTY if the database is a Queue or Recno
database and the specified key exists, but was never explicitly created by the application or
was later deleted. Unless otherwise specified, the Db: :get () method either returns a non-
zero error value or throws an exception that encapsulates a non-zero error value on failure,
and returns 0 on success.

Parameters
txnid
If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 653); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 645); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected.
key
The key Dbt operated on.
2/17/2015 DB C++ API Page 31

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 12.1.6.1 The Db Handle

If DB_DBT_PARTIAL is set for the Dbt used for this parameter, and if the flags parameter is not
set to DB_CONSUME DB_CONSUME_WAIT, or DB_SET_RECNO, then this method will fail and
return EINVAL.

pkey

The pkey parameter is the return key from the primary database. If DB_DBT_PARTIAL is set for
the Dbt used for this parameter, then this method will fail and return EINVAL.

data

The data Dbt operated on.

flags

The flags parameter must be set to 0 or one of the following values:

e DB_CONSUME
Return the record number and data from the available record closest to the head of the
queue, and delete the record. The record number will be returned in key, as described
in Dbt. The data will be returned in the data parameter. A record is available if it is not
deleted and is not currently locked. The underlying database must be of type Queue for
DB_CONSUME to be specified.

e DB_CONSUME_WAIT

The DB_CONSUME_WAIT flag is the same as the DB_CONSUME flag, except that if the Queue
database is empty, the thread of control will wait until there is data in the queue before
returning. The underlying database must be of type Queue for DB_CONSUME_WAIT to be
specified.

If lock or transaction timeouts have been specified, the Db: : get () method with the
DB_CONSUME_WAIT flag may return DB_LOCK_NOTGRANTED. This failure, by itself, does not
require the enclosing transaction be aborted.

e DB_GET_BOTH
Retrieve the key/data pair only if both the key and data match the arguments.
When using a secondary index handle, the DB_GET_BOTH: flag causes:

» the Db: :pget() version of this method to retun the secondary key/primary key/data
tuple only if both the primary and secondary keys match the arguments.

» the Db: :get() version of this method to result in an error.
« DB_SET_RECNO

Retrieve the specified numbered key/data pair from a database. Upon return, both the key
and data items will have been filled in.

2/17/2015

DB C++ API Page 32

../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED

Library Version 12.1.6.1 The Db Handle

The data field of the specified key must be a pointer to a logical record number (that is, a
db_recno_t). This record number determines the record to be retrieved.

For DB_SET_RECNO to be specified, the underlying database must be of type Btree, and it
must have been created with the DB_RECNUM flag.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags
parameter:

e DB_IGNORE_LEASE

Return the data item irrespective of the state of master leases. The item will be returned
under all conditions: if master leases are not configured, if the request is made to a client,
if the request is made to a master with a valid lease, or if the request is made to a master
without a valid lease.

e DB_MULTIPLE
Return multiple data items in the buffer to which the data parameter refers.

In the case of Btree or Hash databases, all of the data items associated with the specified
key are entered into the buffer. In the case of Queue, Recno or Heap databases, all of the
data items in the database, starting at, and subsequent to, the specified key, are entered
into the buffer.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying
database, aligned for unsigned integer access, and be a multiple of 1024 bytes in size.

If the buffer size is insufficient, then upon return from the call the size field of the data
parameter will have been set to an estimated buffer size, and the error DB_BUFFER_SMALL
is returned. (The size is an estimate as the exact size needed may not be known until all
entries are read. It is best to initially provide a relatively large buffer, but applications
should be prepared to resize the buffer as necessary and repeatedly call the method.)

The DB_MULTIPLE flag may only be used alone, or with the DB_GET_BOTH and
DB_SET_RECNO options. The DB_MULTIPLE flag may not be used when accessing databases
made into secondary indices using the Db::associate() (page 6) method.

See the DBT and Bulk Operations (page 202) for more information on working with bulk
get.

e DB_READ_COMMITTED

Configure a transactional get operation to have degree 2 isolation (the read is not
repeatable).

e DB_READ_UNCOMMITTED

Configure a transactional get operation to have degree 1 isolation, reading modified but not
yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified
when the underlying database was opened.

2/17/2015

DB C++ API Page 33

Library Version 12.1.6.1 The Db Handle

+ DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured.
Setting this flag can eliminate deadlock during a read-modify-write cycle by acquiring the
write lock during the read part of the cycle so that another thread of control acquiring a
read lock for the same item, in its own read-modify-write cycle, will not result in deadlock.

Because the Db: :get () method will not hold locks across Berkeley DB calls in non-
transactional operations, the DB_RMW flag to the Db: :get () call is meaningful only in the
presence of transactions.

Errors

The Db: :get () method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DbMemoryException or DB_BUFFER_SMALL
The requested item could not be returned due to undersized buffer.

DbMemoryException (page 352) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_BUFFER_SMALL is returned.

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See Db::set_Llk_exclusive() (page
126) for more information.

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

The DB_CONSUME_WAIT flag was specified, lock or transaction timers were configured and the
lock could not be granted before the wait-time expired.

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the

2/17/2015

DB C++ API Page 34

Library Version 12.1.6.1 The Db Handle

replication environment. Once this occurs, an attempt to use such a handle will throw

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DB_REP_LEASE_EXPIRED

The operation failed because the site's replication master lease has expired.
DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

DB_SECONDARY_BAD
A secondary index references a nonexistent primary key.
EINVAL

If a record number of 0 was specified; the DB_THREAD flag was specified to the

Db::open() (page 71) method and none of the DB_DBT_MALLOC, DB_DBT_REALLOC or
DB_DBT_USERMEM flags were set in the Dbt; the Db: :pget () method was called with a Db
handle that does not refer to a secondary index; or if an invalid flag value or parameter was
specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 35

Library Version 12.1.6.1 The Db Handle

Db::get_bt_minkey()

#include <db_cxx.h>

int
Db::get_bt_minkey(u_int32_t *bt_minkeyp);

The Db: :get_bt_minkey() method returns the minimum number of key/data pairs
intended to be stored on any single Btree leaf page. This value can be set using the
Db::set_bt_minkey() (page 94) method.

The Db: :get_bt_minkey() method may be called at any time during the life of the
application.

The Db: :get_bt_minkey() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
bt_minkeyp

The Db: :get_bt_minkey() method returns the minimum number of key/data pairs intended
to be stored on any single Btree leaf page in bt_minkeyp.

Class
Db
See Also

Database and Related Methods (page 3), Db::set_bt_minkey() (page 94)

2/17/2015 DB C++ API Page 36

Library Version 12.1.6.1 The Db Handle

Db::get_byteswapped()

#include <db_cxx.h>

int
Db::get_ byteswapped(int *isswapped);

The Db: :get_byteswapped() method returns whether the underlying database files were
created on an architecture of the same byte order as the current one, or if they were not
(that is, big-endian on a little-endian machine, or vice versa). This information may be used to
determine whether application data needs to be adjusted for this architecture or not.

The Db: :get_byteswapped() method may not be called before the Db::open() (page 71)
method is called.

The Db: :get_byteswapped() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

isswapped

If the underlying database files were created on an architecture of the same byte order as the
current one, 0 is stored into the memory location referenced by isswapped. If the underlying
database files were created on an architecture of a different byte order as the current one, 1
is stored into the memory location referenced by isswapped.

Errors

The Db: :get_byteswapped() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called before Db::open() (page 71) was called; or if an invalid flag value
or parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 37

Library Version 12.1.6.1 The Db Handle

Db::get_cachesize()

#include <db_cxx.h>

int
Db::get_cachesize(u_int32_t *gbytesp, u_int32_t *bytesp, int *ncachep);

The Db: :get_cachesize() method returns the current size and composition of the cache.
These values may be set using the Db::set_cachesize() (page 97) method.

The Db: :get_cachesize() method may be called at any time during the life of the
application.

The Db: :get_cachesize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
gbytesp

The gbytesp parameter references memory into which the gigabytes of memory in the cache
is copied.

bytesp

The bytesp parameter references memory into which the additional bytes of memory in the
cache is copied.

ncachep

The ncachep parameter references memory into which the number of caches is copied.

Class
Db
See Also

Database and Related Methods (page 3), Db::set_cachesize() (page 97)

2/17/2015 DB C++ API Page 38

Library Version 12.1.6.1 The Db Handle

Db::get_create_dir()

#include <db_cxx.h>

int
Db::get_create_dir(const char **dirp);

Determine which directory a database file will be created in or was found in.
The Db: :get_create_dir() method may be called at any time.

The Db: :get_create_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
dirp

The dirp will be set to the directory specified in the call to Db::set_create_dir() (page
99) method on this handle or to the directory that the database was found in after
Db::open() (page 71) has been called.

Errors

The Db: :get_create_dir() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.
Class

Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 39

Library Version 12.1.6.1 The Db Handle

Db::get_dbname()

#include <db_cxx.h>

int
Db: :get_dbname(const char **filenamep, const char **dbnamep);

The Db: :get_dbname () method returns the filename and database name used by the Db
handle.

The Db: :get_dbname() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
filenamep

The filenamep parameter references memory into which a pointer to the current filename is
copied.

dbnamep

The dbnamep parameter references memory into which a pointer to the current database
name is copied.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 40

Library Version 12.1.6.1 The Db Handle

Db::get_encrypt_flags()

#include <db_cxx.h>

int
Db::get_encrypt_flags(u_int32_t *flagsp);

The Db: :get_encrypt_flags() method returns the encryption flags. This flag can be set
using the Db::set_encrypt() (page 102) method.

The Db: :get_encrypt_flags() method may be called at any time during the life of the
application.

The Db: :get_encrypt_flags() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The Db: :get_encrypt flags() method returns the encryption flags in flagsp.
Class

Db
See Also

Database and Related Methods (page 3), Db::set_encrypt() (page 102)

2/17/2015 DB C++ API Page 41

Library Version 12.1.6.1 The Db Handle

Db::get_errfile()
#include <db_cxx.h>
void Db::get_errfile(FILE **errfilep);

The Db: :get_errfile() method returns the FILE *, as set by the Db::set_errfile() (page
106) method.

The Db: :get_errfile() method may be called at any time during the life of the application.
Parameters

errfilep

The Db: :get_errfile() method returns the FILE * in errfilep.
Class

Db
See Also

Database and Related Methods (page 3), Db::set_errfile() (page 106)

2/17/2015 DB C++ API Page 42

Library Version 12.1.6.1 The Db Handle

Db::get_errpfx()
#include <db_cxx.h>
void Db::get_errpfx(const char **errpfxp);
The Db: :get_errpfx() method returns the error prefix.
The Db: :get_errpfx() method may be called at any time during the life of the application.
Parameters
errpfxp
The Db: :get_errpfx() method returns a reference to the error prefix in errpfxp.
Class
Db
See Also

Database and Related Methods (page 3), Db::set_errpfx() (page 109)

2/17/2015 DB C++ API Page 43

Library Version 12.1.6.1 The Db Handle

Db::get_flags()
#include <db_cxx.h>
int Db::get_flags(u_int32_t *flagsp);

The Db: :get_flags() method returns the current database flags as set by the
Db::set_flags() (page 112) method.

The Db: :get_flags() method may be called at any time during the life of the application.

The Db: :get_flags() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The Db: :get_flags() method returns the current flags in flagsp.
Class

Db
See Also

Database and Related Methods (page 3), Db::set_flags() (page 112)

2/17/2015 DB C++ API Page 44

Library Version 12.1.6.1 The Db Handle

Db::get_h_ffactor()
#include <db_cxx.h>
int Db::get_h_ffactor(u_int32_t *h_ffactorp);

The Db: :get_h_ffactor() method returns the hash table density as set by the
Db::set_h_ffactor() (page 120) method. The hash table density is the number of items that
Berkeley DB tries to place in a hash bucket before splitting the hash bucket.

The Db: :get_h_ffactor() method may be called at any time during the life of the
application.

The Db: :get_h_ffactor() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_ffactorp

The Db::get_h_ffactor() method returns the hash table density in h_ffactorp.
Class

Db
See Also

Database and Related Methods (page 3), Db::set_h_ffactor() (page 120)

2/17/2015 DB C++ API Page 45

Library Version 12.1.6.1 The Db Handle

Db::get_h_nelem()

#include <db_cxx.h>

int
Db::get_h_nelem(u_int32_t *h_nelemp);

The Db: :get_h_nelem() method returns the estimate of the final size of the hash table as set
by the Db::set_h_nelem() (page 122) method.

The Db: :get_h_nelem() method may be called at any time during the life of the application.

The Db: :get_h_nelem() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
h_nelemp

The Db: :get_h_nelem() method returns the estimate of the final size of the hash table in
h_nelemp.

Class
Db
See Also

Database and Related Methods (page 3), Db::set_h_nelem() (page 122)

2/17/2015 DB C++ API Page 46

Library Version 12.1.6.1 The Db Handle

Db::get__heapsize()

#include <db_cxx.h>

int
Db::get_heapsize(u_int32_t *gbytesp, u_int32_t *bytesp);

Used when the underlying database is configured to use the Heap access method. This
method returns the maximum size of the database's heap file. This value may be set using the
Db::set_heapsize() (page 123) method.

The Db: :get_heapsize() method may be called at any time during the life of the
application.

The Db: :get_heapsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

gbytesp

The gbytesp parameter references memory into which is copied the maximum number of
gigabytes in the heap.

bytesp

The bytesp parameter references memory into which is copied the additional bytes in the
heap.

Class
Db
See Also

Database and Related Methods (page 3), Db::set_heapsize() (page 123)

2/17/2015 DB C++ API Page 47

Library Version 12.1.6.1 The Db Handle

Db::get_heap_regionsize()

#include <db_cxx.h>

int
Db: :get_heap_regionsize(u_int32_t *npagesp);

Used when the underlying database is configured to use the Heap access method.
This method returns the number of pages in a region. This value may be set using the
Db::set_heap_regionsize() (page 125) method.

The Db: :get_heap_regionsize() method may be called at any time during the life of the
application.

The Db: :get_heap_regionsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

npagesp

The npagesp parameter references memory into which is copied the number of pages in a
region.

Class
Db

See Also

Database and Related Methods (page 3), Db::set_heap_regionsize() (page 125)

2/17/2015 DB C++ API Page 48

Library Version 12.1.6.1 The Db Handle

Db::get_lk_exclusive()

#include <db_cxx.h>

int
Db::get_lk_exclusive(int *onoff, int *nowait);

Returns whether the database handle is configured to obtain a write lock on the entire
database. This can be set using the Db::set_lk_exclusive() (page 126) method.

The Db::get_ 1k _exclusive() method may be called at any time during the life of the
application.

The Db::get 1k _exclusive() always returns o.

Parameters
onoff

Indicates whether the handle is configured for exclusive database locking. If 9, it is not
configured for exclusive locking. If 1, then it is configured for exclusive locking.

nowait

Indicates whether the handle is configured for immediate locking. If @, then the locking
operation will block until it can obtain an exclusive database lock. If 1, then the locking
operation will error out if it cannot immediately obtain an exclusive lock.

Class
Db

See Also

Database and Related Methods (page 3), Db::set_lk_exclusive() (page 126)

2/17/2015 DB C++ API Page 49

Library Version 12.1.6.1 The Db Handle

Db::get_lorder()

#include <db_cxx.h>

int

Db::get_lorder(int *lorderp);
The Db: :get_lorder() method returns the database byte order; a byte order of 4,321
indicates a big endian order, and a byte order of 1,234 indicates a little endian order. This
value is set using the Db::set_lorder() (page 128) method.
The Db: :get_lorder() method may be called at any time during the life of the application.

The Db: :get_lorder() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

lorderp

The Db: :get_lorder() method returns the database byte order in lorderp.
Class

Db
See Also

Database and Related Methods (page 3), Db::set_lorder() (page 128)

2/17/2015 DB C++ API Page 50

Library Version 12.1.6.1 The Db Handle

Db::get_msgfile()
#include <db_cxx.h>
void Db::get_msgfile(FILE **msgfilep);

The Db: :get_msgfile() method returns the FILE * used to output informational or

statistical messages. This file handle is configured using the Db::set_msgfile() (page 132)
method.

The Db: :get_msgfile() method may be called at any time during the life of the application.
Parameters

msdfilep

The Db: :get_msgfile() method returns the FILE * in msgfilep.
Class

Db

See Also

Database and Related Methods (page 3), Db::set_msgfile() (page 132)

2/17/2015 DB C++ API

Page 51

Library Version 12.1.6.1 The Db Handle

Db::get_multiple()

#include <db_cxx.h>

int
Db::get_multiple()

This method returns non-zero if the Db handle references a physical file supporting multiple
databases, and 0 otherwise.

In this case, the Db handle is a handle on a database whose key values are the names of the
databases stored in the physical file and whose data values are opaque objects. No keys or
data values may be modified or stored using the database handle.

This method may not be called before the Db::open() (page 71) method is called.
Class

Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 52

Library Version 12.1.6.1 The Db Handle

Db::get_open_flags()

#include <db_cxx.h>

int
Db::get _open_flags(u_int32_t *flagsp);

The Db: :get_open_flags() method returns the current open method flags. That is, this
method returns the flags that were specified when Db::open() (page 71) was called.

The Db: :get_open_flags() method may not be called before the Db: :open() method is
called.

The Db: :get_open_flags() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The Db: :get_open_flags() method returns the current open method flags in flagsp.
Class

Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 53

Library Version 12.1.6.1 The Db Handle

Db::get_partition_callback()

#include <db_cxx.h>

int

Db::get_partition_callback(u_int32_t *partsp,
u_int32_t (**callback_fcn) (DB *dbp, DBT *key);

The Db: :get_partition_callback() method returns the database partitioning callback as
set by the Db::set_partition() (page 134) method.

The Db: :get_partition_callback() method may be called at any time during the life of
the application.

The Db: :get_partition_callback() method either returns a non-zero error value or throws
an exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
partsp

The partsp parameter returns the number of partitions used by the database.

callback_fcn

The callback_fcn parameter returns the partitioning callback.
Class

Db
See Also

Database and Related Methods (page 3), Db::set_partition() (page 134)

2/17/2015 DB C++ API Page 54

Library Version 12.1.6.1 The Db Handle

Db::get_partition_dirs()

#include <db_cxx.h>

int
Db::get_partition_dirs(const char ***dirsp);

Identify the directories used to store the database partitions.
The Db: :get_partition_dirs() method may be called at any time.

The Db::get_partition_dirs() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
dirsp

The dirsp will be set to the array of directories specified in the call to
Db::set_partition_dirs() (page 136) method on this handle or to the directoreies that the

database partitions were found in after Db::open() (page 71) has been called.

Errors

The Db: :get_partition_dirs() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.
Class

Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 55

Library Version 12.1.6.1 The Db Handle

Db::get_partition_keys()

#include <db_cxx.h>

int
Db::get_partition_keys(u_int32_t *partsp, DBT *keysp);

The Db: :get_partition_keys() method returns the range of keys used to specify
the values placed in each of a database's partitions. This information is set using the
Db::set_partition() (page 134) method.

The Db: :get_partition_keys() method may be called at any time during the life of the
application.

The Db: :get_partition_keys() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

partsp

The partsp parameter returns the number of partitions in the database.

keysp

The keysp parameter returns the set of keys used to place values in the database partitions.
Class

Db
See Also

Database and Related Methods (page 3), Db::set_partition() (page 134)

2/17/2015 DB C++ API Page 56

Library Version 12.1.6.1 The Db Handle

Db::get_pagesize()

#include <db_cxx.h>

int
Db::get_pagesize(u_int32_t *pagesizep);

The Db: :get_pagesize() method returns the database’s current page size, as set by the
Db::set_pagesize() (page 133) method. Note that if Db: :set_pagesize() was not called by
your application, then the default pagesize is selected based on the underlying filesystem [/0
block size. If you call Db: :get pagesize() before you have opened the database, the value
returned by this method is therefore the underlying filesystem 1/0 block size.

The Db: :get_pagesize() method may be called only after the database has been opened.

The Db: :get_pagesize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

pagesizep

The Db: :get_pagesize() method returns the page size in pagesizep.
Class

Db

See Also

Database and Related Methods (page 3), Db::set_pagesize() (page 133)

2/17/2015 DB C++ API Page 57

Library Version 12.1.6.1 The Db Handle

Db::get_priority()

#include <db_cxx.h>

int
Db: :get_priority(DB_CACHE_PRIORITY *priorityp);

The Db: :get_priority() method returns the cache priority for pages referenced by the Db
handle. This priority value is set using the Db::set_priority() (page 137) method.

The Db: :get_priority() method may be called only after the database has been opened.

The Db: :get_priority() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priorityp

The Db: :get_priority() method returns a reference to the cache priority in priorityp. See
Db::set_priority() (page 137) for a list of possible priorities.

Class
Db
See Also

Database and Related Methods (page 3), Db::set_priority() (page 137)

2/17/2015 DB C++ API Page 58

Library Version 12.1.6.1 The Db Handle

Db::get_q_extentsize()

#include <db_cxx.h>

int
Db::get_qg_extentsize(u_int32_t *extentsizep);

The Db: :get_q_extentsize() method returns the number of pages in an extent. This value
is used only for Queue databases and is set using the Db::set_q_extentsize() (page 138)
method.

The Db: :get_qg_extentsize() method may be called only after the database has been
opened.

The Db: :get_q_extentsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
extentsizep

The Db: :get_q_extentsize() method returns the number of pages in an extent in
extentsizep. If used on a handle that has not yet been opened, @ is returned.

Class
Db
See Also

Database and Related Methods (page 3), Db::set_q_extentsize() (page 138)

2/17/2015 DB C++ API Page 59

Library Version 12.1.6.1 The Db Handle

Db::get_re_delim()

#include <db_cxx.h>

int
Db::get_re_delim(int *delimp);

The Db: :get_re_delim() method returns the delimiting byte, which is used to mark the end
of a record in the backing source file for the Recno access method. This value is set using the
Db::set_re_delim() (page 139) method.

The Db: :get_re_delim() method may be called only after the database has been opened.

The Db: :get_re_delim() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
delimp

The Db: :get_re_delim() method returns the delimiting byte in delimp. If this method is
called on a handle that has not yet been opened, then the default delimiting byte is returned.
See Db::set_re_delim() (page 139) for details.

Class
Db

See Also

Database and Related Methods (page 3), Db::set_re_delim() (page 139)

2/17/2015 DB C++ API Page 60

Library Version 12.1.6.1 The Db Handle

Db::get_re_len()

#include <db_cxx.h>

int
Db::get_re_len(u_int32_t *re_lenp);

The Db: :get_re_len() method returns the length of the records held in a Queue access
method database. This value can be set using the Db::set_re_len() (page 140) method.

The Db: :get_re_len() method may be called only after the database has been opened.

The Db: :get_re_len() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
re_lenp

The Db: :get_re_len() method returns the record length in re_lenp. If the record length has
never been set using Db::set_re_len() (page 140), then 0 is returned.

Class
Db
See Also

Database and Related Methods (page 3), Db::set_re_len() (page 140)

2/17/2015 DB C++ API Page 61

Library Version 12.1.6.1 The Db Handle

Db::get_re_pad()

#include <db_cxx.h>

int
Db::get_re_pad(int *re_padp);

The Db: :get_re_pad() method returns the pad character used for short, fixed-length
records used by the Queue and Recno access methods. This character is set using the
Db::set_re_pad() (page 142) method.

The Db: :get_re_pad() method may be called only after the database has been opened.

The Db: :get_re_pad() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
re_padp

The Db: :get_re_pad() method returns the pad character in re_padp. If used on a
handle that has not yet been opened, the default pad character is returned. See the
Db::set_re_pad() (page 142) method description for what that default value is.

Class
Db
See Also

Database and Related Methods (page 3), Db::set_re_pad() (page 142)

2/17/2015 DB C++ API Page 62

Library Version 12.1.6.1 The Db Handle

Db::get_re_source()

#include <db_cxx.h>

int

Db::get_re_source(const char **sourcep);
The Db: :get_re_source() method returns the source file used by the Recno access method.
This file is configured for the Recno access method using the Db::set_re_source() (page 143)
method.

The Db: :get_re_source() method may be called only after the database has been opened.

The Db: :get_re_source() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

sourcep

The Db: :get_re_source() method returns a reference to the source file in sourcep.
Class

Db
See Also

Database and Related Methods (page 3), Db::set_re_source() (page 143)

2/17/2015 DB C++ API Page 63

Library Version 12.1.6.1 The Db Handle

Db::get_type()

#include <db_cxx.h>

int
Db: :get_type(DBTYPE *type);

The Db: :get_type() method returns the type of the underlying access method (and file
format). The type value is one of DB_BTREE, DB_HASH, DB_RECNO, or DB_QUEUE. This value
may be used to determine the type of the database after a return from Db::open() (page
71) with the type parameter set to DB_UNKNOWN.

The Db: :get_type() method may not be called before the Db::open() (page 71) method is
called.

The Db: :get_type() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

type

The type parameter references memory into which the type of the underlying access method
is copied.

Errors

The Db: :get_type() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called before Db::open() (page 71) was called; or if an invalid flag value
or parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 64

Library Version 12.1.6.1 The Db Handle

Db::join()
#include <db_cxx.h>
int
Db::join(Dbc **curslist, Dbc **dbcp, u_int32_t flags);
The Db: :join() method creates a specialized join cursor for use in performing equality or

natural joins on secondary indices. For information on how to organize your data to use this
functionality, see Equality join.

The Db: :join() method is called using the Db handle of the primary database.

The join cursor supports only the Dbc::get() (page 183) and Dbc::close() (page 172) cursor
functions:

» Dbc::get() (page 183)

Iterates over the values associated with the keys to which each item in curslist was
initialized. Any data value that appears in all items specified by the curslist parameter
is then used as a key into the primary, and the key/data pair found in the primary is
returned. The flags parameter must be set to 0 or the following value:

« DB_JOIN_ITEM

Do not use the data value found in all the cursors as a lookup key for the primary, but
simply return it in the key parameter instead. The data parameter is left unchanged.

In addition, the following flag may be set by bitwise inclusively OR'ing it into the flags
parameter:

e DB_READ_UNCOMMITTED

Configure a transactional join operation to have degree 1 isolation, reading modified but
not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not
specified when the underlying database was opened.

« DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured.
Setting this flag can eliminate deadlock during a read-modify-write cycle by acquiring the
write lock during the read part of the cycle so that another thread of control acquiring

a read lock for the same item, in its own read-modify-write cycle, will not result in
deadlock.

» Dbc::close() (page 172)

Close the returned cursor and release all resources. (Closing the cursors in curslist is the
responsibility of the caller.)

The Db: :join() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

2/17/2015 DB C++ API Page 65

../../programmer_reference/am_cursor.html#am_join

Library Version 12.1.6.1 The Db Handle

Parameters

curslist

The curslist parameter contains a NULL terminated array of cursors. Each cursor must have
been initialized to refer to the key on which the underlying database should be joined.
Typically, this initialization is done by a Dbc::get() (page 183) call with the DB_SET flag
specified. Once the cursors have been passed as part of a curslist, they should not be
accessed or modified until the newly created join cursor has been closed, or else inconsistent
results may be returned.

Joined values are retrieved by doing a sequential iteration over the first cursor in the curslist
parameter, and a nested iteration over each secondary cursor in the order they are specified
in the curslist parameter. This requires database traversals to search for the current datum in
all the cursors after the first. For this reason, the best join performance normally results from
sorting the cursors from the one that refers to the least number of data items to the one that
refers to the most. By default, Db: : join() does this sort on behalf of its caller.

For the returned join cursor to be used in a transaction-protected manner, the cursors listed in
curslist must have been created within the context of the same transaction.

dbcp

The newly created join cursor is returned in the memory location to which dbcp refers.
flags

The flags parameter must be set to 0 or the following value:

« DB_JOIN_NOSORT

Do not sort the cursors based on the number of data items to which they refer. If the data
are structured so that cursors with many data items also share many common elements,
higher performance will result from listing those cursors before cursors with fewer data
items; that is, a sort order other than the default. The DB_JOIN_NOSORT flag permits
applications to perform join optimization prior to calling the Db: : join() method.

Errors

The Db: :join() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

2/17/2015

DB C++ API Page 66

Library Version 12.1.6.1 The Db Handle

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

DB_SECONDARY_BAD
A secondary index references a nonexistent primary key.

EINVAL

If cursor methods other than Dbc::get() (page 183) or Dbc::close() (page 172) were called;
or if an invalid flag value or parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 67

Library Version 12.1.6.1 The Db Handle

Db::key_range()

#include <db_cxx.h>

int
Db::key range(DbTxn *txnid
Dbt *key, DB_KEY_RANGE *key range, u_int32_t flags);

The Db: :key_range() method returns an estimate of the proportion of keys that are less
than, equal to, and greater than the specified key. The underlying database must be of type
Btree.

The Db: :key_range() method fills in a structure of type DB_KEY_RANGE. The following data
fields are available from the DB_KEY_RANGE structure:

« double less;
A value between 0 and 1, the proportion of keys less than the specified key.
» double equal;
A value between 0 and 1, the proportion of keys equal to the specified key.
o double greater;
A value between 0 and 1, the proportion of keys greater than the specified key.

Values are in the range of 0 to 1; for example, if the field less is 0.05, 5% of the keys in the
database are less than the key parameter. The value for equal will be zero if there is no
matching key, and will be non-zero otherwise.

The Db: :key_range() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 653); if the operation is part of

a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 645); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected. The Db: :key_range() method does not retain the locks it acquires for
the life of the transaction, so estimates may not be repeatable.

key
The key Dbt operated on.
key_range

The estimates are returned in the key_range parameter, which contains three elements of
type double: less, equal, and greater. Values are in the range of 0 to 1; for example, if the

2/17/2015

DB C++ API Page 68

Library Version 12.1.6.1 The Db Handle

field less is 0.05, 5% of the keys in the database are less than the key parameter. The value
for equal will be zero if there is no matching key, and will be non-zero otherwise.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The Db: : key_range() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See Db::set_lk_exclusive() (page
126) for more information.

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EINVAL

If the underlying database was not of type Btree; or if an invalid flag value or parameter was
specified.

2/17/2015

DB C++ API Page 69

Library Version 12.1.6.1 The Db Handle

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 70

Library Version 12.1.6.1 The Db Handle

Db::open()

#include <db_cxx.h>

int
Db::open(DbTxn *txnid, const char *file,
const char *database, DBTYPE type, u_int32 t flags, int mode);

The Db: :open() method opens the database represented by the file and database.

The currently supported Berkeley DB file formats (or access methods) are Btree, Hash, Heap,
Queue, and Recno. The Btree format is a representation of a sorted, balanced tree structure.
The Hash format is an extensible, dynamic hashing scheme. The Queue format supports fast
access to fixed-length records accessed sequentially or by logical record number. The Recno
format supports fixed- or variable-length records, accessed sequentially or by logical record
number, and optionally backed by a flat text file.

Storage and retrieval for the Berkeley DB access methods are based on key/data pairs; see Dbt
for more information.

Calling Db: :open() is a relatively expensive operation, and maintaining a set of open
databases will normally be preferable to repeatedly opening and closing the database for each
new query.

The Db: :open() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success. If Db: :open() fails,
the Db::close() (page 13) method must be called to discard the Db handle.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 653); if the operation is part of

a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 645); otherwise NULL. If no transaction handle is specified,
but the DB_AUTO_COMMIT flag is specified, the operation will be implicitly transaction
protected. Note that transactionally protected operations on a Db handle requires the Db
handle itself be transactionally protected during its open. Also note that the transaction must
be committed before the handle is closed; see Berkeley DB handles for more information.

file

The file parameter is used as the name of an underlying file that will be used to back the
database; see File naming for more information.

In-memory databases never intended to be preserved on disk may be created by setting the
file parameter to NULL. Whether other threads of control can access this database is driven
entirely by whether the database parameter is set to NULL.

When using a Unicode build on Windows (the default), the file argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

2/17/2015

DB C++ API Page 71

../../programmer_reference/program_scope.html
../../programmer_reference/env_naming.html

Library Version 12.1.6.1 The Db Handle

database

The database parameter is optional, and allows applications to have multiple databases in a
single file. Although no database parameter needs to be specified, it is an error to attempt
to open a second database in a file that was not initially created using a database name.
Further, the database parameter is not supported by the Queue or Heap format. Finally, when
opening multiple databases in the same physical file, it is important to consider locking and
memory cache issues; see Opening multiple databases in a single file for more information.

If both the database and file parameters are NULL, the database is strictly temporary and
cannot be opened by any other thread of control. Thus the database can only be accessed by
sharing the single database handle that created it, in circumstances where doing so is safe.

If the database parameter is not set to NULL, the database can be opened by other threads
of control and will be replicated to client sites in any replication group, regardless of whether
the file parameter is set to NULL.

type

The type parameter is of type DBTYPE, and must be set to one of DB_BTREE, DB_HASH,
DB_HEAP, DB_QUEUE, DB_RECNO, or DB_UNKNOWN. If type is DB_UNKNOWN, the database must
already exist and Db: :open () will automatically determine its type. The Db::get_type() (page
64) method may be used to determine the underlying type of databases opened using
DB_UNKNOWN.

It is an error to specify the incorrect type for a database that already exists.
flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more
of the following values:

+ DB_AUTO_COMMIT

Enclose the Db: :open() call within a transaction. If the call succeeds, the open operation
will be recoverable and all subsequent database modification operations based on this
handle will be transactionally protected. If the call fails, no database will have been
created.

e DB_CREATE

Create the database. If the database does not already exist and the DB_CREATE flag is not
specified, the Db: :open() will fail.

« DB_EXCL

Return an error if the database already exists. The DB_EXCL flag is only meaningful when
specified with the DB_CREATE. flag.

e DB_MULTIVERSION

Open the database with support for multiversion concurrency control. This will cause
updates to the database to follow a copy-on-write protocol, which is required to support

2/17/2015

DB C++ API Page 72

../../programmer_reference/am_opensub.html
../../programmer_reference/transapp_read.html

Library Version 12.1.6.1 The Db Handle

snapshot isolation. The DB_MULTIVERSION flag requires that the database be transactionally
protected during its open and is not supported by the queue format.

e DB_NOMMAP

Do not map this database into process memory (see the DbEnv::set_mp_mmapsize() (page
471) method for further information).

e DB_RDONLY

Open the database for reading only. Any attempt to modify items in the database will fail,
regardless of the actual permissions of any underlying files.

e DB_READ_UNCOMMITTED

Support transactional read operations with degree 1 isolation. Read operations on the
database may request the return of modified but not yet committed data. This flag must
be specified on all Db handles used to perform dirty reads or database updates, otherwise
requests for dirty reads may not be honored and the read may block.

e DB_THREAD

Cause the Db handle returned by Db: :open() to be free-threaded; that is, concurrently
usable by multiple threads in the address space. You should use this flag only in the absence
of an encompassing environment.

When opening the database within an encompassing environment, the database inherits
the state of this flag from the environment. That is, if the encompassing environment is
threaded, then the database will also be threaded. Note that it is an error to specify this
flag to the database open if the encompassing environment is not threaded.

Note that this flag is incompatible with the Db::set_lk_exclusive() method.
Be aware that enabling this flag will serialize calls to DB when using the handle across
threads. If concurrent scaling is important to your application we recommend opening
separate handles for each thread (and not specifying this flag), rather than sharing handles
between threads.

e DB_TRUNCATE
Physically truncate the underlying file, discarding all previous databases it might have
held. Underlying filesystem primitives are used to implement this flag. For this reason, it is

applicable only to the file and cannot be used to discard databases within a file.

The DB_TRUNCATE flag cannot be lock or transaction-protected, and it is an error to specify
it in a locking or transaction-protected environment.

mode

On Windows systems, the mode parameter is ignored.

2/17/2015 DB C++ API Page 73

Library Version 12.1.6.1 The Db Handle

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, files created by the
database open are created with mode mode (as described in chmod(2)) and modified by the
process’ umask value at the time of creation (see umask(2)). Created files are owned by the
process owner; the group ownership of created files is based on the system and directory
defaults, and is not further specified by Berkeley DB. System shared memory segments
created by the database open are created with mode mode, unmodified by the process’ umask
value. If mode is 0, the database open will use a default mode of readable and writable by
both owner and group.

Environment Variables

If the database was opened within a database environment, the environment variable
DB_HOME may be used as the path of the database environment home.

Db: :open() is affected by any database directory specified using the
DbEnv::add_data_dir() (page 220) method, or by setting the "add_data_dir" string in the
environment's DB_CONFIG file.

+ TMPDIR

If the file and dbenv parameters to Db: :open() are NULL, the environment variable
TMPDIR may be used as a directory in which to create temporary backing files

Errors

The Db: :open() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See Db::set_Llk_exclusive() (page
126) for more information.

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

ENOENT

The file or directory does not exist.

2/17/2015

DB C++ API Page 74

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The Db Handle

ENOENT

A nonexistent re_source file was specified.
DB_OLD_VERSION

The database cannot be opened without being first upgraded.
DB_META_CHKSUM_FAIL

Checksum mismatch detected on a database metadata page. Either the database is corrupted
or the file is not a Berkeley DB database file.

EEXIST
DB_CREATE and DB_EXCL were specified and the database exists.
EINVAL

If an unknown database type, page size, hash function, pad byte, byte order, or a flag value
or parameter that is incompatible with the specified database was specified; the DB_THREAD
flag was specified and fast mutexes are not available for this architecture; the DB_THREAD
flag was specified to Db: :open(), but was not specified to the DbEnv: :open() call for

the environment in which the Db handle was created; a backing flat text file was specified
with either the DB_THREAD flag or the provided database environment supports transaction
processing; a Heap database is in use and Db::set_heapsize() (page 123) was used to set

a heap size that is different from the value used to create the database or an invalid heap
region size was set using Db::set_heap_regionsize() (page 125); or if an invalid flag value or
parameter was specified.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

Class

Db

See Also

Database and Related Methods (page 3)

2/17/2015

DB C++ API Page 75

Library Version 12.1.6.1 The Db Handle

Db::put()

#include <db_cxx.h>

int

Db::put(DbTxn *txnid, Dbt *key, Dbt *data, u_int32_t flags);
The Db: :put () method stores key/data pairs in the database. The default behavior of the
Db: :put() function is to enter the new key/data pair, replacing any previously existing key
if duplicates are disallowed, or adding a duplicate data item if duplicates are allowed. If the
database supports duplicates, the Db: :put() method adds the new data value at the end of
the duplicate set. If the database supports sorted duplicates, the new data value is inserted at
the correct sorted location.
Unless otherwise specified, the Db: :put () method either returns a non-zero error value or
throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

Parameters

txnid
If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 653); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 645); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected.
key
The key Dbt operated on.
If creating a new record in a Heap database, the key Dbt must be empty. The put method will
return the new record's Record ID (RID) in the key Dbt.
data
The data Dbt operated on.
flags
The flags parameter must be set to 0 or one of the following values:
e DB_APPEND

Append the key/data pair to the end of the database. For the DB_APPEND flag to be

specified, the underlying database must be a Heap, Queue or Recno database. The record

number allocated to the record is returned in the specified key.

There is a minor behavioral difference between the Recno and Queue access methods for

the DB_APPEND flag. If a transaction enclosing a Db: : put () operation with the DB_APPEND

2/17/2015 DB C++ API Page 76

Library Version 12.1.6.1 The Db Handle

flag aborts, the record nhumber may be reallocated in a subsequent DB_APPEND operation if
you are using the Recno access method, but it will not be reallocated if you are using the
Queue access method.

For a Heap database, if the put operation results in the creation of a new record, then this
flag is required.

DB_NODUPDATA

In the case of the Btree and Hash access methods, enter the new key/data pair only if it
does not already appear in the database.

The DB_NODUPDATA flag may only be specified if the underlying database has been
configured to support sorted duplicates. The DB_NODUPDATA flag may not be specified to
the Queue or Recno access methods.

The Db: :put () method will return DB_KEYEXIST (page 194) if DB_NODUPDATA is set and
the key/data pair already appears in the database.

DB_NOOVERWRITE

Enter the new key/data pair only if the key does not already appear in the database. The
Db: :put() method call with the DB_NOOVERWRITE flag set will fail if the key already exists
in the database, even if the database supports duplicates.

The Db: :put () method will return DB_KEYEXIST (page 194) if DB_NOOVERWRITE is set and
the key already appears in the database.

This enforcement of uniqueness of keys applies only to the primary key. The behavior

of insertions into secondary databases is not affected by the DB_NOOVERWRITE flag. In
particular, the insertion of a record that would result in the creation of a duplicate key in a
secondary database that allows duplicates would not be prevented by the use of this flag.

DB_MULTIPLE

Put multiple data items using keys from the buffer to which the key parameter refers and
data values from the buffer to which the data parameter refers.

To put records in bulk with the btree or hash access methods, construct bulk buffers in
the key and data Dbt using DbMultipleDataBuilder (page 211). To put records in bulk with
the recno or queue access methods, construct bulk buffers in the data Dbt as before, but
construct the key Dbt using DbMultipleRecnoDataBuilder (page 215) with a data size of
zero.

A successful bulk operation is logically equivalent to a loop through each key/data pair,
performing a Db::put() (page 76) for each one.

See DBT and Bulk Operations (page 202) for more information on working with bulk
updates.

The DB_MULTIPLE flag may only be used alone, or with the DB_OVERWRITE_DUP option.

2/17/2015

DB C++ API Page 77

Library Version 12.1.6.1 The Db Handle

Errors

DB_MULTIPLE_KEY

Put multiple data items using keys and data from the buffer to which the key parameter
refers.

To put records in bulk with the btree or hash access methods, construct a bulk buffer
in the key Dbt using DbMultipleKeyDataBuilder (page 213). To put records in bulk
with the recno or queue access methods, construct a bulk buffer in the key Dbt using
DbMultipleRecnoDataBuilder (page 215).

See DBT and Bulk Operations (page 202) for more information on working with bulk
updates.

The DB_MULTIPLE_KEY flag may only be used alone, or with the DB_OVERWRITE_DUP option.
DB_OVERWRITE_DUP

Ignore duplicate records when overwriting records in a database configured for sorted
duplicates.

Normally, if a database is configured for sorted duplicates, an attempt to put a record that
compares identically to a record already existing in the database will fail. Using this flag
causes the put to silently proceed, without failure.

This flag is extremely useful when performing bulk puts (using the DB_MULTIPLE or
DB_MULTIPLE_KEY flags). Depending on the number of records you are writing to the
database with a bulk put, you may not want the operation to fail in the event that

a duplicate record is encountered. Using this flag along with the DB_MULTIPLE or
DB_MULTIPLE_KEY flags allows the bulk put to complete, even if a duplicate record is
encountered.

This flag is also useful if you are using a custom comparison function that compares only
part of the data portion of a record. In this case, two records can compare equally when,
in fact, they are not equal. This flag allows the put to complete, even if your custom
comparison routine claims the two records are equal.

The Db: :put () method may fail and throw a DbException exception, encapsulating one of the
following non-zero errors, or return one of the following non-zero errors:

DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1.

An attempt was made to add a record to a constrained database, and the key used for
that record does not exist in the foreign key database.

DB_FOREIGN_ABORT (page 11) was declared for a foreign key database, and then
subsequently a record was deleted from the foreign key database without first removing
it from the constrained secondary database.

2/17/2015

DB C++ API Page 78

Library Version 12.1.6.1 The Db Handle

DB_HEAP_FULL

An attempt was made to add or update a record in a Heap database. However, the size of the
database was constrained using the Db::set_heapsize() (page 123) method, and that limit has
been reached.

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See Db::set_lk_exclusive() (page
126) for more information.

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EACCES
An attempt was made to modify a read-only database.
EINVAL

If a record number of 0 was specified; an attempt was made to add a record to a fixed-length
database that was too large to fit; an attempt was made to do a partial put on a database not
configured for it (such as a database configured for duplicate records); an attempt was made
to add a record to a secondary index; or if an invalid flag value or parameter was specified.

2/17/2015

DB C++ API Page 79

Library Version 12.1.6.1 The Db Handle

ENOSPC

A btree exceeded the maximum btree depth (255).
Class

Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 80

Library Version 12.1.6.1 The Db Handle

Db::remove()

#include <db_cxx.h>

int
Db::remove(const char *file, const char *database, u_int32_t flags);

The Db: :remove () method removes the database specified by the file and database
parameters. If no database is specified, the underlying file represented by file is removed,
incidentally removing all of the databases it contained.

Applications should never remove databases with open Db handles, or in the case of removing

a file, when any database in the file has an open handle. For example, some architectures do

not permit the removal of files with open system handles. On these architectures, attempts to
remove databases currently in use by any thread of control in the system may fail.

The Db: :remove () method should not be called if the remove is intended to be
transactionally safe; the DbEnv::dbremove() (page 231) method should be used instead.

The Db: :remove () method may not be called after calling the Db::open() (page 71) method
on any Db handle. If the Db::open() (page 71) method has already been called on a Db handle,
close the existing handle and create a new one before calling Db: : remove. ()

The Db handle may not be accessed again after Db: : remove() is called, regardless of its
return.

The Db: :remove () method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

file

The file parameter is the physical file which contains the database(s) to be removed.
database

The database parameter is the database to be removed.

flags

The flags parameter is currently unused, and must be set to 0.

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

Db: :remove() is affected by any database directory specified using the
DbEnv::add_data_dir() (page 220) method, or by setting the "add_data_dir" string in the
environment's DB_CONFIG file.

2/17/2015

DB C++ API Page 81

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The Db Handle

Errors

The Db: :remove () method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

ENOENT
The file or directory does not exist.
DB_META_CHKSUM_FAIL

Checksum mismatch detected on a database metadata page. Either the database is corrupted
or the file is not a Berkeley DB database file.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 82

Library Version 12.1.6.1 The Db Handle

Db::rename()

#include <db_cxx.h>

int
Db::rename(const char *file,
const char *database, const char *newname, u_int32_t flags);

The Db: :rename() method renames the database specified by the file and database
parameters to newname. If no database is specified, the underlying file represented by file is
renamed, incidentally renaming all of the databases it contained.

Applications should not rename databases that are currently in use. If an underlying file is
being renamed and logging is currently enabled in the database environment, no database

in the file may be open when the Db: : rename () method is called. In particular, some
architectures do not permit renaming files with open handles. On these architectures,
attempts to rename databases that are currently in use by any thread of control in the system
may fail.

The Db: :rename() method should not be called if the rename is intended to be
transactionally safe; the DbEnv::dbrename() (page 233) method should be used instead.

The Db: :rename () method may not be called after calling the Db::open() (page 71) method
on any Db handle. If the Db::open() (page 71) method has already been called on a Db handle,
close the existing handle and create a new one before calling Db: : rename().

The Db handle may not be accessed again after Db: : rename() is called, regardless of its
return.

The Db: :rename () method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

file
The file parameter is the physical file which contains the database(s) to be renamed.

When using a Unicode build on Windows (the default), the file argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

database

The database parameter is the database to be renamed.
newname

The newname parameter is the new name of the database or file.
flags

The flags parameter is currently unused, and must be set to 0.

2/17/2015

DB C++ API Page 83

Library Version 12.1.6.1 The Db Handle

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

Db: :rename() is affected by any database directory specified using the
DbEnv::add_data_dir() (page 220) method, or by setting the "add_data_dir" string in the
environment's DB_CONFIG file.

Errors

The Db: :rename() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

ENOENT
The file or directory does not exist.
DB_META_CHKSUM_FAIL

Checksum mismatch detected on a database metadata page. Either the database is corrupted
or the file is not a Berkeley DB database file.

Class

Db

See Also

Database and Related Methods (page 3)

2/17/2015

DB C++ API Page 84

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The Db Handle

Db::set_alloc()

#include <db_cxx.h>

int

Db::set_alloc(db_malloc_fcn_type app_malloc,
db_realloc_fcn_type app_realloc,
db_free_fcn_type app_free);

Set the allocation functions used by the DbEnv and Db methods to allocate or free memory
owned by the application.

There are a number of interfaces in Berkeley DB where memory is allocated by the library and
then given to the application. For example, the DB_DBT_MALLOC flag, when specified in the
Dbt object, will cause the Db methods to allocate and reallocate memory which then becomes
the responsibility of the calling application. (See Dbt for more information.) Other examples
are the Berkeley DB interfaces which return statistical information to the application:
Db::stat() (page 147), DbEnv::lock_stat() (page 388), DbEnv::log_archive() (page 407),
DbEnv::log_stat() (page 421), DbEnv::memp_stat() (page 455), and DbEnv::txn_stat() (page
659). There is one method in Berkeley DB where memory is allocated by the application and
then given to the library: Db::associate() (page 6).

On systems in which there may be multiple library versions of the standard allocation
routines (notably Windows NT), transferring memory between the library and the application
will fail because the Berkeley DB library allocates memory from a different heap than the
application uses to free it. To avoid this problem, the DbEnv::set_alloc() (page 279) and

Db: :set_alloc() methods can be used to pass Berkeley DB references to the application’s
allocation routines.

It is not an error to specify only one or two of the possible allocation function parameters to
these interfaces; however, in that case the specified interfaces must be compatible with the
standard library interfaces, as they will be used together. The functions specified must match
the calling conventions of the ANSI C X3.159-1989 (ANSI C) library routines of the same name.

Because databases opened within Berkeley DB environments use the allocation interfaces
specified to the environment, it is an error to attempt to set those interfaces in a database
created within an environment.

The Db::set_alloc() method may not be called after the Db::open() (page 71) method is
called.

The Db::set_alloc() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Errors

The Db: :set_alloc() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If called in a database environment, or called after Db::open() (page 71) was called; or if an
invalid flag value or parameter was specified.

2/17/2015

DB C++ API Page 85

Library Version 12.1.6.1 The Db Handle

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 86

Library Version 12.1.6.1 The Db Handle

Db::set_append_recno()

#include <db_cxx.h>

int
Db::set_append recno(int (*db_append_recno_fcn) (DB *dbp, Dbt *data,
db_recno_t recno));

When using the DB_APPEND option of the Db::put() (page 76) method, it may be useful to
modify the stored data based on the generated key. If a callback function is specified using
the Db: :set_append_recno() method, it will be called after the record number has been
selected, but before the data has been stored.

The Db: :set_append_recno() method configures operations performed using the specified
Db handle, not all operations performed on the underlying database.

The Db: :set_append_recno() method may not be called after the Db::open() (page 71)
method is called.

The Db: :set_append_recno() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_append_recno_fcn

The db_append_recno_fcn parameter is a function to call after the record number has been
selected but before the data has been stored into the database. The function takes three
parameters:

e dbp

The dbp parameter is the enclosing database handle.
» data

The data parameter is the data Dbt to be stored.
* recno

The recno parameter is the generated record number.

The called function may modify the data Dbt. If the function needs to allocate memory for
the data field, the flags field of the returned Dbt should be set to DB_DBT_APPMALLOC, which
indicates that Berkeley DB should free the memory when it is done with it.

2/17/2015

DB C++ API Page 87

Library Version 12.1.6.1 The Db Handle

The callback function must return 0 on success and errno or a value outside of the Berkeley
DB error name space on failure.

Errors

The Db: :set_append_recno() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 88

Library Version 12.1.6.1 The Db Handle

Db::set_bt_compare()

#include <db_cxx.h>

extern "C" {
typedef int (*bt_compare_fcn_type)(DB *db, const DBT *dbt1l,
const DBT *dbt2, size_t *locp);
}s
int
Db: :set_bt_compare(bt_compare_fcn_type bt_compare_fcn);

Set the Btree key comparison function. The comparison function is called whenever it is
necessary to compare a key specified by the application with a key currently stored in the
tree.

If no comparison function is specified, the keys are compared lexically, with shorter keys
collating before longer keys.

The Db::set_bt compare() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db: :set_bt_compare() method may not be called after the Db::open() (page 71) method
is called. If the database already exists when Db::open() (page 71) is called, the information
specified to Db: :set_bt_compare() must be the same as that historically used to create the
database or corruption can occur.

The Db::set_bt compare() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_compare_fcn

The bt_compare_fcn function is the application-specified Btree comparison function. The
comparison function takes four parameters:

e db
The db parameter is the enclosing database handle.
e dbtl
The dbt1 parameter is the Dbt representing the application supplied key.
e dbt2
The dbt2 parameter is the Dbt representing the current tree's key.
e locp

The locp parameter is currently unused, and must be set to NULL or corruption can occur.

2/17/2015

DB C++ API Page 89

Library Version 12.1.6.1 The Db Handle

The bt_compare_fcn function must return an integer value less than, equal to, or greater
than zero if the first key parameter is considered to be respectively less than, equal to, or
greater than the second key parameter. In addition, the comparison function must cause the
keys in the database to be well-ordered. The comparison function must correctly handle any
key values used by the application (possibly including zero-length keys). In addition, when
Btree key prefix comparison is being performed (see Db::set_bt_prefix() (page 95) for

more information), the comparison routine may be passed a prefix of any database key. The
data and size fields of the Dbt are the only fields that may be used for the purposes of this

comparison, and no particular alignment of the memory to which by the data field refers may
be assumed.

Errors

The Db: :set_bt_ compare() method may fail and throw a DbException exception,

encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

2/17/2015

DB C++ API Page 90

Library Version 12.1.6.1 The Db Handle

Db::set_bt_compress()

#include <db_cxx.h>

extern "C" {
typedef int (*bt_compress_fcn_type) (DB *db, const DBT *prevKey,
const DBT *prevData, const DBT *key, const DBT *data, DBT *dest);
typedef int (*bt_decompress_fcn_typ)(DB *db, const DBT *prevKey,
const DBT *prevData, DBT *compressed, DBT *destKey,
DBT *destData);
}s
int
Db::set_bt_compress(bt_compress_fcn_type bt_compress_fcn,
bt_decompress_fcn_type bt _decompress_fcn);

Set the Btree compression and decompression functions. The compression function is called
whenever a key/data pair is added to the tree and the decompression function is called
whenever data is requested from the tree.

This method is only compatible with prefix-based compression routines. This callback is mostly
intended for compressing keys. From a performance perspective, it is better to perform
compression of the data portion of your records outside of the Berkeley DB library.

If NULL function pointers are specified, then default compression and decompression functions
are used. Berkeley DB's default compression function performs prefix compression on all keys
and prefix compression on data values for duplicate keys. If using default compression, both
the default compression and decompression functions must be used.

The Db: :set_bt_compress() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db: :set_bt compress() method may not be called after the Db::open() (page 71)
method is called. If the database already exists when Db::open() (page 71) is called, the
information specified to Db: : set_bt_compress() must be the same as that historically used
to create the database or corruption can occur.

The Db: :set_bt_compress() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_compress_fcn

The bt_compress_fcn function is the application-specified Btree compression function. The
compression function takes six parameters:

e db
The db parameter is the enclosing database handle.

e prevKey

2/17/2015

DB C++ API Page 91

Library Version 12.1.6.1 The Db Handle

The prevKey parameter is the Dbt representing the key immediately preceding the
application supplied key.

prevData

The prevData parameter is the Dbt representing the data associated with prevKey.
key

The key parameter is the Dbt representing the application supplied key.

data

The data parameter is the Dbt representing the application supplied data.

dest

The dest parameter is the Dbt representing the data stored in the tree, where the function
should write the compressed data.

The bt_compress_fcn function must return 0 on success and a non-zero value on failure. If
the compressed data cannot fit in dest->set_data() (the size of which is returned by dest-
>get_ulen()), the function should identify the required buffer size in dest->set_size() and
return DB_BUFFER_SMALL.

bt_decompress_fcn

The bt_decompress_fcn function is the application-specified Btree decompression function.
The decompression function takes six parameters:

db
The db parameter is the enclosing database handle.
prevKey

The prevKey parameter is the Dbt representing the key immediately preceding the key
being decompressed.

prevData
The prevData parameter is the Dbt representing the data associated with prevKey.
compressed

The compressed parameter is the Dbt representing the data stored in the tree, that is, the
compressed data.

destKey

The key parameter is the Dbt where the decompression function should store the
decompressed key.

2/17/2015

DB C++ API Page 92

Library Version 12.1.6.1 The Db Handle

e destData

The data parameter is the Dbt where the decompression function should store the
decompressed key.

The bt_decompress_fcn function must return 0 on success and a non-zero value on failure. If
the decompressed data cannot fit in key->set_data() or data->set_data() (the size of which
is returned by the Dbt's get_ulen() method), the function should identify the required buffer
size using the Dbt's set_size() method and return DB_BUFFER_SMALL.

Errors

The Db::set_bt compress() method may fail and throw a DbException exception,

encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

2/17/2015

DB C++ API Page 93

Library Version 12.1.6.1 The Db Handle

Db::set_bt_minkey()

#include <db_cxx.h>

int
Db::set_bt_minkey(u_int32_t bt_minkey);

Set the minimum number of key/data pairs intended to be stored on any single Btree leaf
page.

This value is used to determine if key or data items will be stored on overflow pages instead
of Btree leaf pages. For more information on the specific algorithm used, see Minimum keys
per page. The bt_minkey value specified must be at least 2; if bt_minkey is not explicitly
set, a value of 2 is used.

The Db: :set_bt_minkey() method configures a database, not only operations performed
using the specified Db handle.

The Db: :set_bt_minkey() method may not be called after the Db::open() (page 71) method
is called. If the database already exists when Db::open() (page 71) is called, the information
specified to Db: :set_bt_minkey() will be ignored.

The Db::set_bt minkey() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
bt_minkey

The bt_minkey parameter is the minimum number of key/data pairs intended to be stored on
any single Btree leaf page.

Errors

The Db: :set_bt_minkey() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 94

../../programmer_reference/bt_conf.html#am_conf_bt_minkey
../../programmer_reference/bt_conf.html#am_conf_bt_minkey

Library Version 12.1.6.1 The Db Handle

Db::set_bt_prefix()

#include <db_cxx.h>

extern "C" {
typedef size_t (*bt_prefix_fcn_type)(DB *, const DBT *dbtil,
const DBT *dbt2);

}s

int

Db::set_bt_prefix(bt_prefix_fcn_type bt_prefix_fcn);

Set the Btree prefix function. The prefix function is used to determine the amount by

which keys stored on the Btree internal pages can be safely truncated without losing their
uniqueness. See the Btree prefix comparison section of the Berkeley DB Reference Guide for
more details about how this works. The usefulness of this is data-dependent, but can produce
significantly reduced tree sizes and search times in some data sets.

If no prefix function or key comparison function is specified by the application, a default
lexical comparison function is used as the prefix function. If no prefix function is specified and
a key comparison function is specified, no prefix function is used. It is an error to specify a
prefix function without also specifying a Btree key comparison function.

The Db: :set_bt_prefix() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db: :set_bt_prefix() method may not be called after the Db::open() (page 71) method
is called. If the database already exists when Db::open() (page 71) is called, the information
specified to Db: :set_bt prefix() must be the same as that historically used to create the
database or corruption can occur.

The Db: :set_bt_prefix() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

bt_prefix_fcn

The bt_prefix_fcn function is the application-specific Btree prefix function. The prefix
function takes three parameters:

e db

The db parameter is the enclosing database handle.
e dbtl

The dbt1 parameter is a Dbt representing a database key.
e dbt2

The dbt2 parameter is a Dbt representing a database key.

2/17/2015

DB C++ API Page 95

../../programmer_reference/bt_conf.html#am_conf_bt_prefix

Library Version 12.1.6.1 The Db Handle

The bt_prefix_fcn function must return the number of bytes of the second key parameter
that would be required by the Btree key comparison function to determine the second key
parameter’s ordering relationship with respect to the first key parameter. If the two keys are
equal, the key length should be returned. The prefix function must correctly handle any key
values used by the application (possibly including zero-length keys). The data and size fields
of the Dbt are the only fields that may be used for the purposes of this determination, and no
particular alignment of the memory to which the data field refers may be assumed.

Errors

The Db::set_bt prefix() method may fail and throw a DbException exception,

encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

2/17/2015

DB C++ API Page 96

Library Version 12.1.6.1 The Db Handle

Db::set_cachesize()

#include <db_cxx.h>

int

Db::set_cachesize(u_int32_t gbytes, u_int32_t bytes, int ncache);
Set the size of the shared memory buffer pool -- that is, the cache. The cache should be the
size of the normal working data set of the application, with some small amount of additional

memory for unusual situations. (Note: the working set is not the same as the number of pages
accessed simultaneously, and is usually much larger.)

The default cache size is 256KB, and may not be specified as less than 20KB. Any cache size
less than 500MB is automatically increased by 25% to account for buffer pool overhead; cache
sizes larger than 500MB are used as specified. The maximum size of a single cache is 4GB on
32-bit systems and 10TB on 64-bit systems. (All sizes are in powers-of-two, that is, 256KB

is 2*18 not 256,000.) For information on tuning the Berkeley DB cache size, see Selecting a
cache size.

It is possible to specify caches to Berkeley DB large enough they cannot be allocated
contiguously on some architectures. For example, some releases of Solaris limit the amount of
memory that may be allocated contiguously by a process. If ncache is 0 or 1, the cache will be
allocated contiguously in memory. If it is greater than 1, the cache will be split across ncache
separate regions, where the region size is equal to the initial cache size divided by ncache.

Because databases opened within Berkeley DB environments use the cache specified to
the environment, it is an error to attempt to set a cache in a database created within an
environment.

The Db: :set_cachesize() method may not be called after the Db::open() (page 71) method
is called.

The Db: :set_cachesize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
gbytes
The size of the cache is set to gbytes gigabytes plus bytes.
bytes
The size of the cache is set to gbytes gigabytes plus bytes.
ncache

The ncache parameter is the number of caches to create.

Errors

The Db: :set_cachesize() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

2/17/2015 DB C++ API Page 97

../../programmer_reference/general_am_conf.html#am_conf_cachesize
../../programmer_reference/general_am_conf.html#am_conf_cachesize

Library Version 12.1.6.1 The Db Handle

EINVAL

If the specified cache size was impossibly small; the method was called after Db::open() (page
71) was called; or if an invalid flag value or parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 98

Library Version 12.1.6.1 The Db Handle

Db::set_create_dir()

#include <db_cxx.h>

int
Db::set_create_dir(const char *dir);

Specify which directory a database should be created in or looked for.

The Db: :set_create_dir() method may not be called after the Db::open() (page 71) method
is called.

The Db::set_create_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dir

The dir will be used to create or locate the database file specified in the Db::open() (page 71)
method call. The directory must be one of the directories in the environment list specified by
DbEnv::add_data_dir() (page 220).

Errors

The Db: :set_create_dir() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

2/17/2015

DB C++ API Page 99

Library Version 12.1.6.1 The Db Handle

Db::set_dup_compare()

#include <db_cxx.h>

extern "C" {
typedef int (*dup_compare_ fcn_type) (DB *db, const DBT *dbtl,
const DBT *dbt2, size t *locp);
}s5
int
Db::set_dup_compare(dup_compare_ fcn_type dup_compare_fcn);

Set the duplicate data item comparison function. The comparison function is called whenever
it is necessary to compare a data item specified by the application with a data item currently
stored in the database. Calling Db: :set_dup_compare() implies calling Db::set_flags() (page
112) with the DB_DUPSORT flag.

If no comparison function is specified, the data items are compared lexically, with shorter
data items collating before longer data items.

The Db: :set_dup_compare() method may not be called after the Db::open() (page 71)
method is called. If the database already exists when Db::open() (page 71) is called, the
information specified to Db: : set_dup_compare() must be the same as that historically used
to create the database or corruption can occur.

The Db: :set_dup_compare() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dup_compare_fcn

The dup_compare_fcn function is the application-specified duplicate data item comparison
function. The function takes four arguments:

« db
The db parameter is the enclosing database handle.
e dbtl
The dbt1 parameter is a Dbt representing the application supplied data item.
e dbt2
The dbt2 parameter is a Dbt representing the current tree's data item.
e locp
The locp parameter is currently unused, and must be set to NULL or corruption can occur.

The dup_compare_fcn function must return an integer value less than, equal to, or greater
than zero if the first data item parameter is considered to be respectively less than, equal

2/17/2015

DB C++ API Page 100

Library Version 12.1.6.1 The Db Handle

to, or greater than the second data item parameter. In addition, the comparison function
must cause the data items in the set to be well-ordered. The comparison function must
correctly handle any data item values used by the application (possibly including zero-length
data items). The data and size fields of the Dbt are the only fields that may be used for the
purposes of this comparison, and no particular alignment of the memory to which the data

field refers may be assumed.
Errors

The Db: :set_dup_compare() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:
EINVAL
An invalid flag value or parameter was specified.

Class
Db

See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 101

Library Version 12.1.6.1 The Db Handle

Db::set_encrypt()

#include <db_cxx.h>

int
Db::set_encrypt(const char *passwd, u_int32_t flags);

Set the password used by the Berkeley DB library to perform encryption and decryption.

Because databases opened within Berkeley DB environments use the password specified to
the environment, it is an error to attempt to set a password in a database created within an
environment.

The Db: :set_encrypt() method may not be called after the Db::open() (page 71) method is
called.

The Db: :set_encrypt() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
passwd
The passwd parameter is the password used to perform encryption and decryption.
flags
The flags parameter must be set to 0 or the following value:
« DB_ENCRYPT_AES

Use the Rijndael/AES (also known as the Advanced Encryption Standard and Federal
Information Processing Standard (FIPS) 197) algorithm for encryption or decryption.

Errors

The Db: :set_encrypt() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

EOPNOTSUPP
Cryptography is not available in this Berkeley DB release.
Class

Db

2/17/2015 DB C++ API Page 102

Library Version 12.1.6.1 The Db Handle

See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 103

Library Version 12.1.6.1 The Db Handle

Db::set_errcall()

#include <db_cxx.h>

void Db::set_errcall(void (*db_errcall_fcn)
(const DbEnv *dbenv, const char *errpfx, const char *msg));

When an error occurs in the Berkeley DB library, an exception is thrown or an error return
value is returned by the interface. In some cases, however, the errno value may be
insufficient to completely describe the cause of the error, especially during initial application
debugging.

The DbEnv::set_errcall() (page 300) and Db: :set_errcall() methods are used to enhance
the mechanism for reporting error messages to the application. In some cases, when an error
occurs, Berkeley DB will call db_errcall_fcn() with additional error information. It is up to the
db_errcall_fcn() function to display the error message in an appropriate manner.

Setting db_errcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DbEnv::set_error_stream() (page 304) and
Db::set_error_stream() (page 108) methods to display the additional information via an
output stream, or the Db::set_errfile() (page 106) or Db::set_errfile() (page 302) methods
to display the additional information via a C library FILE *. You should not mix these
approaches.

This error-logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

For Db handles opened inside of Berkeley DB environments, calling the Db: :set_errcall()
method affects the entire environment and is equivalent to calling the
DbEnv::set_errcall() (page 300) method.

When used on a database that was not opened in an environment, the Db: :set_errcall()
method configures operations performed using the specified Db handle, not all operations
performed on the underlying database.

The Db: :set_errcall() method may be called at any time during the life of the application.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters
db_errcall_fcn

The db_errcall_fcn parameter is the application-specified error reporting function. The
function takes three parameters:

2/17/2015 DB C++ API Page 104

Library Version 12.1.6.1 The Db Handle

e dbenv
The dbenv parameter is the enclosing database environment.
e errpfx

The errpfx parameter is the prefix string (as previously set by Db::set_errpfx() (page 109)
or DbEnv::set_errpfx() (page 305)).

e msg
The msg parameter is the error message string.
Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 105

Library Version 12.1.6.1 The Db Handle

Db::set_errfile()

#include <db_cxx.h>

void Db::set_errfile(FILE *errfile);

When an error occurs in the Berkeley DB library, an exception is thrown or an error return
value is returned by the interface. In some cases, however, the errno value may be
insufficient to completely describe the cause of the error, especially during initial application
debugging.

The DbEnv::set_errfile() (page 302) and Db: :set_errfile() methods are used to enhance
the mechanism for reporting error messages to the application by setting a C library FILE * to
be used for displaying additional Berkeley DB error messages. In some cases, when an error
occurs, Berkeley DB will output an additional error message to the specified file reference.

Alternatively, you can use the DbEnv::set_error_stream() (page 304) and
Db::set_error_stream() (page 108) methods to display the additional messages via an output
stream, or the DbEnv::set_errcall() (page 300) or Db::set_errcall() (page 104) methods to
capture the additional error information in a way that does not use C library FILE *'s. You
should not mix these approaches.

The error message will consist of the prefix string and a colon (":") (if a prefix string was
previously specified using Db::set_errpfx() (page 109) or DbEnv::set_errpfx() (page 305)),
an error string, and a trailing <newline> character.

The default configuration when applications first create Db or DbEnv handles is as if the
DbEnv::set_errfile() (page 302) or Db: :set_errfile() methods were called with the
standard error output (stderr) specified as the FILE * argument. Applications wanting no
output at all can turn off this default configuration by calling the DbEnv::set_errfile() (page
302) or Db: :set_errfile() methods with NULL as the FILE * argument. Additionally,
explicitly configuring the error output channel using any of the following methods will also
turn off this default output for the application:

e Db::set_errfile()

o DbEnv::set_errfile() (page 302)

o DbEnv::set_errcall() (page 300)

o Db::set_errcall() (page 104)

o DbEnv::set_error_stream() (page 304)
o Db::set_error_stream() (page 108)

This error logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

For Db handles opened inside of Berkeley DB environments, calling the Db: :set_errfile()
method affects the entire environment and is equivalent to calling the
DbEnv::set_errfile() (page 302) method.

2/17/2015

DB C++ API Page 106

Library Version 12.1.6.1 The Db Handle

When used on a database that was not opened in an environment, the Db: :set_errfile()

method configures operations performed using the specified Db handle, not all operations

performed on the underlying database.

The Db: :set_errfile() method may be called at any time during the life of the application.
Parameters

errfile

The errfile parameter is a C library FILE * to be used for displaying additional Berkeley DB
error information.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 107

Library Version 12.1.6.1 The Db Handle

Db::set_error_stream()

#include <db_cxx.h>

void Db::set_error_stream(class ostream*);

When an error occurs in the Berkeley DB library, an exception is thrown or an errno value is
returned by the interface. In some cases, however, the errno value may be insufficient to
completely describe the cause of the error, especially during initial application debugging.

The DbEnv::set_error_stream() (page 304) and Db: :set_error_stream() methods are used

to enhance the mechanism for reporting error messages to the application by setting the C+

+ ostream used for displaying additional Berkeley DB error messages. In some cases, when an
error occurs, Berkeley DB will output an additional error message to the specified stream.

The error message will consist of the prefix string and a colon (":") (if a prefix string was
previously specified using Db::set_errpfx() (page 109), an error string, and a trailing
<newline> character.

Setting stream to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_errfile() (page 302) or Db::set_errfile() (page
106) methods to display the additional information via a C Library FILE *, or the
DbEnv::set_errcall() (page 300) and Db::set_errcall() (page 104) methods to capture the
additional error information in a way that does not use either output streams or C Library
FILE *'s. You should not mix these approaches.

This error-logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

For Db handles opened inside of Berkeley DB environments, calling the
Db::set_error_stream() method affects the entire environment and is equivalent to calling
the DbEnv::set_error_stream() (page 304) method.

The Db: :set_error_stream() method may be called at any time during the life of the
application.

Parameters
stream

The stream parameter is the application-specified output stream to be used for additional
error information.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 108

Library Version 12.1.6.1 The Db Handle

Db::set_errpfx()
#include <db_cxx.h>
void Db::set_errpfx(const char *errpfx);
Set the prefix string that appears before error messages issued by Berkeley DB.

The Db: :set_errpfx() and DbEnv::set_errpfx() (page 305) methods do not copy the
memory to which the errpfx parameter refers; rather, they maintain a reference to it.
Although this allows applications to modify the error message prefix at any time (without
repeatedly calling the interfaces), it means the memory must be maintained until the handle
is closed.

For Db handles opened inside of Berkeley DB environments, calling the Db: :set_errpfx()
method affects the entire environment and is equivalent to calling the
DbEnv::set_errpfx() (page 305) method.

The Db: :set_errpfx() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db::set_errpfx() method may be called at any time during the life of the application.
Parameters

errpfx

The errpfx parameter is the application-specified error prefix for additional error messages.
Class

Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 109

Library Version 12.1.6.1 The Db Handle

Db::set_feedback()

#include <db_cxx.h>

int
Db: :set_feedback(void (*db_feedback_fcn) (DB *dbp, int opcode,
int percent));

Some operations performed by the Berkeley DB library can take non-trivial amounts of time.
The Db: :set_feedback() method can be used by applications to monitor progress within
these operations. When an operation is likely to take a long time, Berkeley DB will call the
specified callback function with progress information.

It is up to the callback function to display this information in an appropriate manner.

The Db: :set_feedback() method may be called at any time during the life of the
application.

The Db: :set_feedback() method returns a non-zero error value on failure and 0 on success.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters
db_feedback_fcn

The db_feedback_fcn parameter is the application-specified feedback function called to
report Berkeley DB operation progress. The callback function must take three parameters:

« dbp
The dbp parameter is a reference to the enclosing database.
¢ opcode

The opcode parameter is an operation code. The opcode parameter may take on any of the
following values:

e DB_UPGRADE

The underlying database is being upgraded.
e DB_VERIFY

The underlying database is being verified.

e percent

2/17/2015 DB C++ API Page 110

Library Version 12.1.6.1 The Db Handle

The percent parameter is the percent of the operation that has been completed, specified
as an integer value between 0 and 100.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 111

Library Version 12.1.6.1 The Db Handle

Db::set_flags()

#include <db_cxx.h>
int
Db::set_flags(u_int32_t flags);
Configure a database. Calling Db: :set_flags() is additive; there is no way to clear flags.

The Db: :set_flags() method may not be called after the Db::open() (page 71) method is
called.

The Db: :set_flags() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

General
The following flags may be specified for any Berkeley DB access method:
e DB_CHKSUM

Do checksum verification of pages read into the cache from the backing filestore. Berkeley
DB uses the SHA1 Secure Hash Algorithm if encryption is configured and a general hash
algorithm if it is not.

Calling Db: : set_flags() with the DB_CHKSUM flag only affects the specified Db handle
(and any other Berkeley DB handles opened within the scope of that handle).

If the database already exists when Db::open() (page 71) is called, the DB_CHKSUM flag will
be ignored.

e DB_ENCRYPT

Encrypt the database using the cryptographic password specified to the
DbEnv::set_encrypt() (page 292) or Db::set_encrypt() (page 102) methods.

Calling Db: :set_flags() with the DB_ENCRYPT flag only affects the specified Db handle
(and any other Berkeley DB handles opened within the scope of that handle).

If the database already exists when Db::open() (page 71) is called, the DB_ENCRYPT flag
must be the same as the existing database or an error will be returned.

Encrypted databases are not portable between machines of different byte orders, that
is, encrypted databases created on big-endian machines cannot be read on little-endian
machines, and vice versa.

« DB_TXN_NOT_DURABLE

2/17/2015

DB C++ API Page 112

Library Version 12.1.6.1 The Db Handle

If set, Berkeley DB will not write log records for this database. This means that updates
of this database exhibit the ACI (atomicity, consistency, and isolation) properties, but
not D (durability); that is, database integrity will be maintained, but if the application
or system fails, integrity will not persist. The database file must be verified and/or
restored from backup after a failure. In order to ensure integrity after application

shut down, the database handles must be closed without specifying DB_NOSYNC, or all
database changes must be flushed from the database environment cache using either
the DbEnv::txn_checkpoint() (page 657) or DbEnv::memp_sync() (page 462) methods.
All database handles for a single physical file must set DB_TXN_NOT_DURABLE, including
database handles for different databases in a physical file.

Calling Db: :set_flags() with the DB_TXN_NOT_DURABLE flag only affects the specified Db
handle (and any other Berkeley DB handles opened within the scope of that handle).

Btree
The following flags may be specified for the Btree access method:

+ DB_DUP

Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering of
duplicates in the database is determined by the order of insertion, unless the ordering is
otherwise specified by use of a cursor operation or a duplicate sort function.

The DB_DUPSORT flag is preferred to DB_DUP for performance reasons. The DB_DUP flag
should only be used by applications wanting to order duplicate data items manually.

Calling Db: :set_flags() with the DB_DUP flag affects the database, including all threads
of control accessing the database.

If the database already exists when Db::open() (page 71) is called, the DB_DUP flag must be
the same as the existing database or an error will be returned.

It is an error to specify both DB_DUP and DB_RECNUM.
DB_DUPSORT

Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering

of duplicates in the database is determined by the duplicate comparison function. If the
application does not specify a comparison function using the Db::set_dup_compare() (page
100) method, a default lexical comparison will be used. It is an error to specify both
DB_DUPSORT and DB_RECNUM.

Calling Db: :set_flags() with the DB_DUPSORT flag affects the database, including all
threads of control accessing the database.

If the database already exists when Db::open() (page 71) is called, the DB_DUPSORT flag
must be the same as the existing database or an error will be returned.

2/17/2015

DB C++ API Page 113

Library Version 12.1.6.1 The Db Handle

e DB_RECNUM

Support retrieval from the Btree using record numbers. For more information, see the
DB_SET_RECNO flag to the Db::get() (page 31) and Dbc::get() (page 183) methods.

Logical record numbers in Btree databases are mutable in the face of record insertion or
deletion. See the DB_RENUMBER flag in the Recno access method information for further
discussion.

Maintaining record counts within a Btree introduces a serious point of contention, namely
the page locations where the record counts are stored. In addition, the entire database
must be locked during both insertions and deletions, effectively single-threading the
database for those operations. Specifying DB_RECNUM can result in serious performance
degradation for some applications and data sets.

It is an error to specify both DB_DUP and DB_RECNUM.

Calling Db: :set_flags() with the DB_RECNUM flag affects the database, including all
threads of control accessing the database.

If the database already exists when Db::open() (page 71) is called, the DB_RECNUM flag
must be the same as the existing database or an error will be returned.

DB_REVSPLITOFF

Turn off reverse splitting in the Btree. As pages are emptied in a database, the Berkeley
DB Btree implementation attempts to coalesce empty pages into higher-level pages in
order to keep the database as small as possible and minimize search time. This can hurt
performance in applications with cyclical data demands; that is, applications where the
database grows and shrinks repeatedly. For example, because Berkeley DB does page-level
locking, the maximum level of concurrency in a database of two pages is far smaller than
that in a database of 100 pages, so a database that has shrunk to a minimal size can cause
severe deadlocking when a new cycle of data insertion begins.

Calling Db: :set_flags() with the DB_REVSPLITOFF flag only affects the specified Db
handle (and any other Berkeley DB handles opened within the scope of that handle).

Hash
The following flags may be specified for the Hash access method:

« DB_DUP

Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering of
duplicates in the database is determined by the order of insertion, unless the ordering is
otherwise specified by use of a cursor operation.

The DB_DUPSORT flag is preferred to DB_DUP for performance reasons. The DB_DUP flag
should only be used by applications wanting to order duplicate data items manually.

2/17/2015

DB C++ API Page 114

Library Version 12.1.6.1 The Db Handle

Calling Db: :set_flags() with the DB_DUP flag affects the database, including all threads
of control accessing the database.

If the database already exists when Db::open() (page 71) is called, the DB_DUP flag must be
the same as the existing database or an error will be returned.

DB_DUPSORT

Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering

of duplicates in the database is determined by the duplicate comparison function. If the
application does not specify a comparison function using the Db::set_dup_compare() (page
100) method, a default lexical comparison will be used.

Calling Db: :set_flags() with the DB_DUPSORT flag affects the database, including all
threads of control accessing the database.

If the database already exists when Db::open() (page 71) is called, the DB_DUPSORT flag
must be the same as the existing database or an error will be returned.

DB_REVSPLITOFF

Turns off hash bucket compaction. When a hash bucket is emptied, the Berkeley DB Hash
implementation will decrease the hash table size, coalescing buckets. This will decrease the
number of pages in the database. This can hurt performance in applications with cyclical
data demands — that is, applications where the database grows and shrinks repeatedly —
because of the cost of resplitting buckets when they grow again.

Calling Db: :set_flags() with the DB_REVSPLITOFF flag only affects the specified Db
handle (and any other Berkeley DB handles opened within the scope of that handle).

Queue
The following flags may be specified for the Queue access method:

e DB_INORDER

The DB_INORDER flag modifies the operation of the DB_CONSUME or DB_CONSUME_WAIT
flags to Db::get() (page 31) to return key/data pairs in order. That is, they will always
return the key/data item from the head of the queue.

The default behavior of queue databases is optimized for multiple readers, and does

not guarantee that record will be retrieved in the order they are added to the queue.
Specifically, if a writing thread adds multiple records to an empty queue, reading threads
may skip some of the initial records when the next Db::get() (page 31) call returns.

This flag modifies the Db::get() (page 31) call to verify that the record being returned is
in fact the head of the queue. This will increase contention and reduce concurrency when
there are many reading threads.

2/17/2015

DB C++ API Page 115

Library Version 12.1.6.1 The Db Handle

Calling Db: :set_flags() with the DB_INORDER flag only affects the specified Db handle
(and any other Berkeley DB handles opened within the scope of that handle).

Recno
The following flags may be specified for the Recno access method:
e DB_RENUMBER

Specifying the DB_RENUMBER flag causes the logical record numbers to be mutable, and
change as records are added to and deleted from the database.

Using the Db::put() (page 76) or Dbc::put() (page 192) interfaces to create new records
will cause the creation of multiple records if the record number is more than one greater
than the largest record currently in the database. For example, creating record 28, when
record 25 was previously the last record in the database, will create records 26 and 27 as
well as 28. Attempts to retrieve records that were created in this manner will result in an
error return of DB_KEYEMPTY.

If a created record is not at the end of the database, all records following the new record
will be automatically renumbered upward by one. For example, the creation of a new
record numbered 8 causes records numbered 8 and greater to be renumbered upward by
one. If a cursor was positioned to record number 8 or greater before the insertion, it will be
shifted upward one logical record, continuing to refer to the same record as it did before.

If a deleted record is not at the end of the database, all records following the removed
record will be automatically renumbered downward by one. For example, deleting the
record numbered 8 causes records numbered 9 and greater to be renumbered downward
by one. If a cursor was positioned to record number 9 or greater before the removal, it will
be shifted downward one logical record, continuing to refer to the same record as it did
before.

If a record is deleted, all cursors that were positioned on that record prior to the removal
will no longer be positioned on a valid entry. This includes cursors used to delete an item.
For example, if a cursor was positioned to record number 8 before the removal of that
record, subsequent calls to Dbc::get() (page 183) with flags of DB_CURRENT will result

in an error return of DB_KEYEMPTY until the cursor is moved to another record. A call to
Dbc::get() (page 183) with flags of DB_NEXT will return the new record numbered 8 -
which is the record that was numbered 9 prior to the delete (if such a record existed).

For these reasons, concurrent access to a Recno database with the DB_RENUMBER flag
specified may be largely meaningless, although it is supported.

Calling Db: :set_flags() with the DB_RENUMBER flag affects the database, including all
threads of control accessing the database.

If the database already exists when Db::open() (page 71) is called, the DB_RENUMBER flag
must be the same as the existing database or an error will be returned.

e DB_SNAPSHOT

2/17/2015

DB C++ API Page 116

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 12.1.6.1 The Db Handle

This flag specifies that any specified re_source file be read in its entirety when
Db::open() (page 71) is called. If this flag is not specified, the re_source file may be read
lazily.

See the Db::set_re_source() (page 143) method for information on the re_source file.

Calling Db: :set_flags() with the DB_SNAPSHOT flag only affects the specified Db handle
(and any other Berkeley DB handles opened within the scope of that handle).

Errors

The Db: :set_flags() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.
Class

Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 117

Library Version 12.1.6.1 The Db Handle

Db::set_h_compare()

#include <db_cxx.h>

extern "C" {
typedef int (*compare_fcn_type) (DB *db, const DBT *dbtl,
const DBT *dbt2, size_ t *locp);
}s
int
Db: :set_h_compare(compare_fcn_type compare_fcn);
Set the Hash key comparison function. The comparison function is called whenever it is

necessary to compare a key specified by the application with a key currently stored in the
database.

If no comparison function is specified, a byte-by-byte comparison is performed.

The Db: :set_h_compare() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db::set_h_compare() method may not be called after the Db::open() (page 71) method
is called. If the database already exists when Db::open() (page 71) is called, the information
specified to Db: :set_h_compare() must be the same as that historically used to create the
database or corruption can occur.

The Db: :set_h_compare() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

compare_fcn

The compare_fcn function is the application-specified Hash comparison function. The
comparison function takes four parameters:

e db
The db parameter is the enclosing database handle.
e dbtl
The dbt1 parameter is the Dbt representing the application supplied key.
e dbt2
The dbt2 parameter is the Dbt representing the current database’s key.
e locp
The locp parameter is currently unused, and must be set to NULL or corruption can occur.

The compare_fcn function must return an integer value less than, equal to, or greater than
zero if the first key parameter is considered to be respectively less than, equal to, or greater

2/17/2015

DB C++ API Page 118

Library Version 12.1.6.1 The Db Handle

than the second key parameter. The comparison function must correctly handle any key values
used by the application (possibly including zero-length keys). The data and size fields of the
Dbt are the only fields that may be used for the purposes of this comparison, and no particular
alignment of the memory to which by the data field refers may be assumed.

Errors

The Db::set_h_compare() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 119

Library Version 12.1.6.1 The Db Handle

Db::set_h_ffactor()

#include <db_cxx.h>

int
Db::set_h_ffactor(u_int32_t h_ffactor);

Set the desired density within the hash table. If no value is specified, the fill factor will be
selected dynamically as pages are filled.

The density is an approximation of the number of keys allowed to accumulate in any one
bucket, determining when the hash table grows or shrinks. If you know the average sizes
of the keys and data in your data set, setting the fill factor can enhance performance. A
reasonable rule computing fill factor is to set it to the following:

(pagesize - 32) / (average key size + average data_size + 8)

The Db: :set_h_ffactor() method configures a database, not only operations performed
using the specified Db handle.

The Db: :set_h_ffactor() method may not be called after the Db::open() (page 71) method
is called. If the database already exists when Db::open() (page 71) is called, the information
specified to Db: :set_h_ffactor() will be ignored.

The Db::set_h_ffactor() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
h_ffactor
The h_ffactor parameter is the desired density within the hash table.

Errors
The Db: :set_h_ffactor() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 120

Library Version 12.1.6.1 The Db Handle

Db::set_h_hash()

#include <db_cxx.h>

extern "C" {
typedef u_int32_t (*h_hash_fcn_type)
(DB *, const void *bytes, u_int32_t length);

}s

int

Db::set_h_hash(h_hash_fcn_type h_hash_fcn);
Set a user-defined hash function; if no hash function is specified, a default hash function is
used. Because no hash function performs equally well on all possible data, the user may find
that the built-in hash function performs poorly with a particular data set.

The Db::set_h_hash() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db: :set_h_hash() method may not be called after the Db::open() (page 71) method is
called. If the database already exists when Db::open() (page 71) is called, the information
specified to Db: :set_h_hash() must be the same as that historically used to create the
database or corruption can occur.

The Db: :set_h_hash() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_hash_fcn
The h_hash_fcn parameter is the application-specified hash function.

Application-specified hash functions take a pointer to a byte string and a length as
parameters, and return a value of type u_int32_t. The hash function must handle any key
values used by the application (possibly including zero-length keys).

Errors

The Db: :set_h_hash() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

2/17/2015

DB C++ API Page 121

Library Version 12.1.6.1 The Db Handle

Db::set_h_nelem()

#include <db_cxx.h>

int
Db::set_h_nelem(u_int32_t h_nelem);

Set an estimate of the final size of the hash table.

In order for the estimate to be used when creating the database, the

Db::set_h_ffactor() (page 120) method must also be called. If the estimate or fill factor
are not set or are set too low, hash tables will still expand gracefully as keys are entered,
although a slight performance degradation may be noticed.

The Db: :set_h_nelem() method configures a database, not only operations performed using
the specified Db handle.

The Db: :set_h_nelem() method may not be called after the Db::open() (page 71) method
is called. If the database already exists when Db::open() (page 71) is called, the information
specified to Db: :set_h_nelem() will be ignored.

The Db::set_h_nelem() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

h_nelem

The h_nelem parameter is an estimate of the final size of the hash table.
Errors

The Db: :set_h_nelem() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 122

Library Version 12.1.6.1 The Db Handle

Db::set__heapsize()
#include <db_cxx.h>
int
Db::set_heapsize(u_int32_t gbytes, u_int32_t bytes, u_int32 t flags);

Sets the maximum on-disk database file size used by a database configured to use the Heap
access method. If this method is never called, the database’s file size can grow without bound.
If this method is called, then the heap file can never grow larger than the limit defined by
this method. In that case, attempts to update or create records in a Heap database that has
reached its maximum size will result in a DB_HEAP_FULL error return.

The size specified to this method must be at least three times the database page size. That is,
a Heap database must contain at least three database pages. You can set the database page
size using the Db::set_pagesize() (page 133) method.

The Db: :set_heapsize() method may not be called after the Db::open() (page 71) method is
called. Further, if this method is called on an existing Heap database, the size specified here
must match the size used to create the database. Note, however, that specifying an incorrect
size to this method will not result in an error return (EINVAL) until the database is opened.

The Db: :set_heapsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
gbytes
The size of the heap is set to gbytes gigabytes plus bytes.
bytes
The size of the heap is set to gbytes gigabytes plus bytes.
flags
The flags parameter is currently unused, and must be set to 0.
Errors

The Db: :set_heapsize() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the specified heap size was too small; the method was called after Db::open() (page 71) was
called; or if an invalid flag value or parameter was specified.

Class
Db

2/17/2015 DB C++ API Page 123

Library Version 12.1.6.1 The Db Handle

See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 124

Library Version 12.1.6.1 The Db Handle

Db::set_heap_regionsize()

#include <db_cxx.h>

int
Db::set_heap_regionsize(u_int32_t npages);

Sets the number of pages in a region of a database configured to use the Heap access method.
If this method is never called, the default region size for the database’s page size will be used.
You can set the database page size using the Db::set_pagesize() (page 133) method.

The Db: :set_heap_regionsize() method may not be called after the Db::open() (page
71) method is called. If the database already exists when Db::open() (page 71) is called,

the information specified to Db: : set_heap_regionsize() will be ignored. If the specified
region size is larger than the maximum region size for the database's page size, an error will
be returned when Db::open() (page 71) is called. The maximum allowable region size will be
included in the error message.

The Db: :set_heap_regionsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

npages

The npages parameter is the number of pages in a Heap database region.
Errors

The Db: :set_heap_regionsize() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the specified region size was too small; the method was called after Db::open() (page 71)
was called; or if an invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3), Db::get_heap_regionsize() (page 48)

2/17/2015 DB C++ API Page 125

Library Version 12.1.6.1 The Db Handle

Db::set_lk_exclusive()

#include <db_cxx.h>

int
Db::set_lk_exclusive(int nowait_onoff);

Configures the database handle to obtain a write lock on the entire database when it is
opened. This gives the handle exclusive access to the database, because the write lock will
block all other threads of control for both read and write access.

Use this method to improve the throughput performance on your database for the thread that
is controlling this handle. When configured with this method, operations on the database do
not acquire page locks as they perform read and/or write operations. Also, the exclusive lock
means that operations performed on the database handle will never be blocked waiting for
lock due to another thread's activities. The application will also be immune to deadlocks.

On the other hand, use of this method means that you can only have a single thread accessing
the database until the handle is closed. For some applications, the loss of multiple threads
concurrently operating on the database will result in performance degradation.

Also, use of this method means that you can only have one transaction active for the handle at
a time.

Note

This method is incompatible with the DB_THREAD (page 73) configuration flag.

The Db::set_1lk_exclusive() method may not be called after the Db::open() (page 71)
method is called.

The Db::set_1k_exclusive() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Replication Notes

Replication applications that use exclusive database handles need to be written with caution.
This is because replication clients cannot process updates on an exclusive database until all
local handles on the database are closed. Also, attempting to open an exclusive database
handle on a currently operating client will result in the open call failing with the error
EINVAL.

Also, opening an exclusive database handle on a replication master will result in all clients
being locked out of the database. On clients, existing handles on the exclusive database will
return the error DB_REP_DEAD_HANDLE when accessed, and must be closed. New handles
opened on the exclusive database will block until the master closes its exclusive database
handle.

2/17/2015

DB C++ API Page 126

Library Version 12.1.6.1 The Db Handle

Parameters
nowait_onoff

If set to @, this method will block until it can obtain the exclusive lock on the database. If set
to some value other than @, DB_LOCK_NOTGRANTED is returned when the handle is opened if
the exclusive database lock cannot be immediately obtained.

Errors

The Db::set_1k_exclusive() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 71) was called; the method was called on a
currently operating replication client; or if an invalid flag value or parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 127

Library Version 12.1.6.1 The Db Handle

Db::set_lorder()

#include <db_cxx.h>

int
Db::set_lorder(int lorder);

Set the byte order for integers in the stored database metadata. The host byte order of the
machine where the Berkeley DB library was compiled will be used if no byte order is set.

The access methods provide no guarantees about the byte ordering of the application data
stored in the database, and applications are responsible for maintaining any necessary
ordering.

The Db: :set_lorder() method configures a database, not only operations performed using
the specified Db handle.

The Db: :set_lorder() method may not be called after the Db::open() (page 71) method is
called. If the database already exists when Db::open() (page 71) is called, the information
specified to Db: :set_lorder() will be ignored.

If creating additional databases in a single physical file, information specified to
Db::set_lorder() will be ignored and the byte order of the existing databases will be used.

The Db: :set_lorder() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
lorder

The lorder parameter should represent the byte order as an integer; for example, big endian
order is the number 4,321, and little endian order is the number 1,234.

Errors

The Db: :set_lorder() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 128

Library Version 12.1.6.1 The Db Handle

Db::set_message_stream()
#include <db_cxx.h>
void Db::set_message_stream(class ostream*);

There are interfaces in the Berkeley DB library which either directly output informational
messages or statistical information, or configure the library to output such messages when
performing other operations. For example, the DbEnv::set_verbose() (page 341) and
DbEnv::stat_print() (page 344) methods.

The DbEnv::set_message_stream() (page 324) and Db: :set_message_stream() methods are
used to display these messages for the application. In this case, the message will include a
trailing <newline> character.

Setting stream to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_msgfile() (page 327) or Db::set_msgfile() (page
132) methods to display the additional information via a C Library FILE *, or the
DbEnv::set_msgcall() (page 325) and Db::set_msgcall() (page 130) methods to capture the
additional error information in a way that does not use either output streams or C Library
FILE *'s. You should not mix these approaches.

For Db handles opened inside of Berkeley DB environments, calling the
Db::set_message_stream() method affects the entire environment and is equivalent to
calling the DbEnv::set_message_stream() (page 324) method.

The Db: :set_message_stream() method configures operations performed using the specified
Db handle, not all operations performed on the underlying database.

The Db: :set_message_stream() method may be called at any time during the life of the
application.

Parameters
stream

The stream parameter is the application-specified output stream to be used for additional
message information.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 129

Library Version 12.1.6.1 The Db Handle

Db::set_msgcall()

#include <db_cxx.h>

void Db::set _msgcall(void (*db_msgcall fcn)(const DbEnv *dbenv,
const char *msg));

There are interfaces in the Berkeley DB library which either directly output informational
messages or statistical information, or configure the library to output such messages
when performing other operations, for example, DbEnv::set_verbose() (page 341) and
DbEnv::stat_print() (page 344).

The DbEnv::set_msgcall() (page 325) and Db: :set_msgcall() methods are used to pass
these messages to the application, and Berkeley DB will call db_msgcall_fcn with each
message. It is up to the db_msgcall_fcn function to display the message in an appropriate
manner.

Setting db_msgcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DbEnv::set_error_stream() (page 304) and
Db::set_error_stream() (page 108) methods to display the messages via an output stream, or
the Db::set_msgfile() (page 132) or Db::set_msgfile() (page 327) methods to display the
messages via a C library FILE *. You should not mix these approaches.

For Db handles opened inside of Berkeley DB environments, calling the Db: :set_msgcall()
method affects the entire environment and is equivalent to calling the
DbEnv::set_msgcall() method.

The Db::set_msgcall() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db: :set_msgcall() method may be called at any time during the life of the application.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_msgcall_fcn

The db_msgcall_fcn parameter is the application-specified message reporting function. The
function takes two parameters:

¢ dbenv
The dbenv parameter is the enclosing database environment.

* msg

2/17/2015

DB C++ API Page 130

Library Version 12.1.6.1 The Db Handle

The msg parameter is the message string.
Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 131

Library Version 12.1.6.1 The Db Handle

Db::set_msgfile()
#include <db_cxx.h>
void Db::set_msgfile(FILE *msgfile);

There are interfaces in the Berkeley DB library which either directly output informational
messages or statistical information, or configure the library to output such messages
when performing other operations, for example, DbEnv::set_verbose() (page 341) and
DbEnv::stat_print() (page 344).

The DbEnv::set_msgfile() (page 327) and Db: :set_msgfile() methods are used to display
these messages for the application. In this case the message will include a trailing <newline>
character.

Setting msgfile to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_message_stream() (page 324) and
Db::set_message_stream() (page 129) methods to display the messages via an output stream,
or the DbEnv::set_msgcall() (page 325) or Db::set_msgcall() (page 130) methods to capture
the additional error information in a way that does not use C library FILE *'s. You should not
mix these approaches.

For Db handles opened inside of Berkeley DB environments, calling the Db: :set_msgfile()
method affects the entire environment and is equivalent to calling the
DbEnv::set_msgfile() (page 327) method.

The Db: :set_msgfile() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

The Db: :set_msgfile() method may be called at any time during the life of the application.
Parameters

msdfile

The msgfile parameter is a C library FILE * to be used for displaying messages.
Class

Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 132

Library Version 12.1.6.1 The Db Handle

Db::set_pagesize()

#include <db_cxx.h>

int
Db::set_pagesize(u_int32_t pagesize);

Set the size of the pages used to hold items in the database, in bytes. The minimum page size
is 512 bytes, the maximum page size is 64K bytes, and the page size must be a power-of-two.
If the page size is not explicitly set, one is selected based on the underlying filesystem 1/0
block size. The automatically selected size has a lower limit of 512 bytes and an upper limit of
16K bytes.

For information on tuning the Berkeley DB page size, see Selecting a page size.

The Db: :set_pagesize() method configures a database, not only operations performed using
the specified Db handle.

The Db: :set_pagesize() method may not be called after the Db::open() (page 71) method
is called. If the database already exists when Db::open() (page 71) is called, the information
specified to Db: :set_pagesize() will be ignored.

If creating additional databases in a single physical file, information specified to
Db::set_pagesize() will be ignored and the page size of the existing databases will be used.

The Db: :set_pagesize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

pagesize

The pagesize parameter sets the database page size.
Errors

The Db: :set_pagesize() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 133

../../programmer_reference/general_am_conf.html#am_conf_pagesize

Library Version 12.1.6.1 The Db Handle

Db::set_partition()

#include <db_cxx.h>

int
Db::set_partition(u_int32_t parts, DBT *kyes,
u_int32_t (*db_partition_fcn) (Db *db, DBT *key));

Set up partitioning for a database. Partitioning may be used on either BTREE or HASH
databases. Partitions may be specified by either a set of keys specifying a range of values in
each partition, or with a callback function that returns the number of the partition to put a
specific key. Partition range keys may only be specified for BTREE databases.

Partitions are implemented as separate database files and can help reduce contention within
a logical database. Contention can come from multiple threads of control accessing database
pages simultaneously. Typically these pages are the root of a btree and the metadata page
which contains allocation information in both BTREE and HASH databases. Each partition has
its own metadata and root pages.

Parameters
Exactly one of the parameters keys and partition_fcn must be NULL.
parts

The parts parameter is the number of partitions to create. The value must be greater than or
equal to 2, and smaller than 1000000.

keys

The keys parameter is an array of DBT structures containing the keys that specify the range of
key values to be stored in each partition. Each key specifies the minimum value that may be
stored in the corresponding partition. The number of keys must be one less than the number
of partitions specified by the parts parameter since the first partition will hold any key less
than the first key in the array.

db_ partition_fcn

The db_partition_fcn parameter is the application-specified partitioning function. The
function returns an integer which will be used modulo the number of partitions specified by
the parts parameter. The function will be called with two parameters:

e db
The db parameter is the database handle.
* key
The key parameter is the key for which a partition number should be returned.
Class
Db

2/17/2015 DB C++ API Page 134

Library Version 12.1.6.1 The Db Handle

See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 135

Library Version 12.1.6.1 The Db Handle

Db::set_partition_dirs()

#include <db_cxx.h>
int
Db::set_partition_dirs(const char **dirs);

Specify which directories will contain the database extents. If the number of directories is less
than the number of partitions, the directories will be used in a round robin fashion.

The Db::set_partition_dirs() method may not be called after the Db::open() (page 71)
method is called.

The Db::set_partition_dirs() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dirs

The dirs points to an array of directories that will be used to create or locate the database
extent files specified to the Db::open() (page 71) method. The directories must be included in
the environment list specified by DbEnv::add_data_dir() (page 220).

Errors

The Db: :set_partition_dirs() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

2/17/2015

DB C++ API Page 136

Library Version 12.1.6.1 The Db Handle

Db::set_priority()
#include <db_cxx.h>
int
Db::set_priority(DB_CACHE_PRIORITY priority);
Set the cache priority for pages referenced by the Db handle.

The priority of a page biases the replacement algorithm to be more or less likely to discard a
page when space is needed in the buffer pool. The bias is temporary, and pages will eventually
be discarded if they are not referenced again. The Db: :set_priority() method is only
advisory, and does not guarantee pages will be treated in a specific way.

The Db: :set_priority() method may be called at any time during the life of the
application.

The Db: :set_priority() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
priority
The priority parameter must be set to one of the following values:
e DB_PRIORITY_VERY_LOW
The lowest priority: pages are the most likely to be discarded.
e DB_PRIORITY_LOW
The next lowest priority.
e DB_PRIORITY_DEFAULT
The default priority.
o DB_PRIORITY_HIGH
The next highest priority.
« DB_PRIORITY_VERY_HIGH
The highest priority: pages are the least likely to be discarded.
Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 137

Library Version 12.1.6.1 The Db Handle

Db::set_q_extentsize()

#include <db_cxx.h>

int
Db::set_qg_extentsize(u_int32_t extentsize);

Set the size of the extents used to hold pages in a Queue database, specified as a number of
pages. Each extent is created as a separate physical file. If no extent size is set, the default
behavior is to create only a single underlying database file.

For information on tuning the extent size, see Selecting a extent size.

The Db::set_qg_extentsize() method configures a database, not only operations performed
using the specified Db handle.

The Db: :set_q_extentsize() method may not be called after the Db::open() (page 71)
method is called. If the database already exists when Db::open() (page 71) is called, the
information specified to Db: :set_q_extentsize() will be ignored.

The Db::set_q_extentsize() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

extentsize

The extentsize parameter is the number of pages in a Queue database extent.
Errors

The Db: :set_q_extentsize() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 138

../../programmer_reference/rq_conf.html#am_conf_extentsize

Library Version 12.1.6.1 The Db Handle

Db::set_re_delim()

#include <db_cxx.h>

int
Db::set_re_delim(int re_delim);

Set the delimiting byte used to mark the end of a record in the backing source file for the
Recno access method.

This byte is used for variable length records if the re_source file is specified using the
Db::set_re_source() (page 143) method. If the re_source file is specified and no delimiting
byte was specified, <newline> characters (that is, ASCII 0x0a) are interpreted as end-of-record
markers.

The Db::set_re_delim() method configures a database, not only operations performed using
the specified Db handle.

The Db::set_re_delim() method may not be called after the Db::open() (page 71) method
is called. If the database already exists when Db::open() (page 71) is called, the information
specified to Db: :set_re _delim() will be ignored.

The Db::set_re delim() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

re_delim

The re_delim parameter is the delimiting byte used to mark the end of a record.
Errors

The Db::set_re_delim() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 139

Library Version 12.1.6.1 The Db Handle

Db::set_re_len()

#include <db_cxx.h>

int
Db::set_re_len(u_int32_t re_len);

For the Queue access method, specify that the records are of length re_len. For the Queue
access method, the record length must be enough smaller than the database’s page size that
at least one record plus the database page's metadata information can fit on each database

page.

For the Recno access method, specify that the records are fixed-length, not byte-delimited,
and are of length re_len.

Any records added to the database that are less than re_len bytes long are automatically
padded (see Db::set_re_pad() (page 142) for more information).

Any attempt to insert records into the database that are greater than re_len bytes long will
cause the call to fail immediately and return an error.

The Db::set_re_ len() method configures a database, not only operations performed using
the specified Db handle.

The Db: :set_re_len() method may not be called after the Db::open() (page 71) method is
called. If the database already exists when Db::open() (page 71) is called, the information
specified to Db: :set_re_len() will be ignored.

The Db::set_re len() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

re_len

The re_len parameter is the length of a Queue or Recno database record, in bytes.
Errors

The Db::set_re_len() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class

Db

2/17/2015 DB C++ API Page 140

Library Version 12.1.6.1 The Db Handle

See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 141

Library Version 12.1.6.1 The Db Handle

Db::set_re_pad()

#include <db_cxx.h>

int
Db::set_re_pad(int re_pad);

Set the padding character for short, fixed-length records for the Queue and Recno access
methods.

If no pad character is specified, <space> characters (that is, ASCII 0x20) are used for padding.

The Db: :set_re_pad() method configures a database, not only operations performed using
the specified Db handle.

The Db: :set_re_pad() method may not be called after the Db::open() (page 71) method is
called. If the database already exists when Db::open() (page 71) is called, the information
specified to Db: :set_re_pad() will be ignored.

The Db::set_re pad() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
re_pad

The re_pad parameter is the pad character for fixed-length records for the Queue and Recno
access methods.

Errors

The Db: :set_re_pad() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 142

Library Version 12.1.6.1 The Db Handle

Db::set_re_source()

#include <db_cxx.h>

int
Db::set_re_source(char *source);

Set the underlying source file for the Recno access method. The purpose of the source value is
to provide fast access and modification to databases that are normally stored as flat text files.

The source parameter specifies an underlying flat text database file that is read to initialize
a transient record number index. In the case of variable length records, the records are
separated, as specified by Db::set_re_delim() (page 139). For example, standard UNIX

byte stream files can be interpreted as a sequence of variable length records separated by
<newline> characters.

In addition, when cached data would normally be written back to the underlying database file
(for example, the Db::close() (page 13) or Db::sync() (page 156) methods are called), the in-
memory copy of the database will be written back to the source file.

By default, the backing source file is read lazily; that is, records are not read from the file
until they are requested by the application. If multiple processes (not threads) are accessing
a Recno database concurrently, and are either inserting or deleting records, the backing
source file must be read in its entirety before more than a single process accesses the
database, and only that process should specify the backing source file as part of the
Db::open() (page 71) call. See the DB_SNAPSHOT flag for more information.

Reading and writing the backing source file specified by source cannot be transaction-
protected because it involves filesystem operations that are not part of the Db transaction
methodology. For this reason, if a temporary database is used to hold the records, it is
possible to lose the contents of the source file, for example, if the system crashes at the right
instant. If a file is used to hold the database, normal database recovery on that file can be
used to prevent information loss, although it is still possible that the contents of source will
be lost if the system crashes.

The source file must already exist (but may be zero-length) when Db::open() (page 71) is
called.

It is not an error to specify a read-only source file when creating a database, nor is it an error
to modify the resulting database. However, any attempt to write the changes to the backing
source file using either the Db::sync() (page 156) or Db::close() (page 13) methods will fail,

of course. Specify the DB_NOSYNC flag to the Db::close() (page 13) method to stop it from
attempting to write the changes to the backing file; instead, they will be silently discarded.

For all of the previous reasons, the source field is generally used to specify databases that are
read-only for Berkeley DB applications; and that are either generated on the fly by software
tools or modified using a different mechanism — for example, a text editor.

The Db: :set_re_source() method configures operations performed using the specified Db
handle, not all operations performed on the underlying database.

2/17/2015

DB C++ API Page 143

Library Version 12.1.6.1 The Db Handle

The Db: :set_re_source() method may not be called after the Db::open() (page 71) method
is called. If the database already exists when Db::open() (page 71) is called, the information
specified to Db: :set_re_source() must be the same as that historically used to create the
database or corruption can occur.

The Db::set_re source() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
source
The backing flat text database file for a Recno database.

When using a Unicode build on Windows (the default), the source argument will be
interpreted as a UTF-8 string, which is equivalent to ASCII for Latin characters.

Errors

The Db: :set_re_source() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

Class

Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 144

Library Version 12.1.6.1 The Db Handle

Db::sort_multiple()

#include <db_cxx.h>

int
Db::sort_multiple(Dbt *key, Dbt *data, u_int32_t flags);

The Db: :sort_multiple() method is used to sort a set of Dbts into database insert order.

If specified the application specific btree comparison and duplicate comparison functions will
be used if they are configured.

The key and data parameters must contain pairs of items. That is the n-th entry in key must
correspond to the n-th entry in data.

The Db: :sort_multiple() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
key

The key parameter must contain a set of Dbt entries in DB_MULTIPLE or DB_MULTIPLE_KEY
format.

The sorted entries will be returned in the key parameter.
data

If non-NULL, the data parameter must contain a set of Dbts entries in DB_MULTIPLE format.
Each entry must correspond to an entry in the key parameter.

flags
The flags parameter must be set to one of the following values:
o DB_MULTIPLE

Sorts one or two DB_MULTIPLE format Dbts. Assumes that key and data specify pairs of key
and data items to sort together. If the data parameter is NULL the API will sort the key
arrays according to the btree comparison function.

o DB_MULTIPLE_KEY
Sorts a DB_MULTIPLE_KEY format Dbt.
Errors
The Db: :sort_multiple() method may fail and throw a DbException exception,

encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

2/17/2015 DB C++ API Page 145

Library Version 12.1.6.1 The Db Handle

EACCES

An attempt was made to modify a read-only database.

EINVAL

An invalid flag value or parameter was specified.

Class
Db
See Also

Database and Related Methods (page 3)

DBT and Bulk Operations (page 202)

2/17/2015 DB C++ API

Page 146

Library Version 12.1.6.1 The Db Handle

Db::stat()

#include <db_cxx.h>

int
Db::stat(void *sp, u_int32_t flags);
The Db: :stat() method creates a statistical structure and copies a pointer to it into user-

specified memory locations. Specifically, if sp is non-NULL, a pointer to the statistics for the
database are copied into the memory location to which it refers.

The Db: :stat() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 653); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 645); otherwise NULL. If no transaction handle is specified,
but the operation occurs in a transactional database, the operation will be implicitly
transaction protected.

flags
The flags parameter must be set to 0 or one of the following values:
o DB_FAST_STAT

Return only the values which do not require traversal of the database. Among other things,
this flag makes it possible for applications to request key and record counts without
incurring the performance penalty of traversing the entire database.

e DB_READ_COMMITTED

Database items read during a transactional call will have degree 2 isolation. This ensures
the stability of the data items read during the stat operation but permits that data to be
modified or deleted by other transactions prior to the commit of the specified transaction.

e DB_READ_UNCOMMITTED

Database items read during a transactional call will have degree 1 isolation, including
modified but not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag
was not specified when the underlying database was opened.

Statistical Structure

Statistical structures are stored in allocated memory. If application-specific allocation routines
have been declared (see DbEnv::set_alloc() (page 279) for more information), they are

2/17/2015 DB C++ API Page 147

Library Version 12.1.6.1 The Db Handle

used to allocate the memory; otherwise, the standard C library malloc(3) is used. The caller
is responsible for deallocating the memory. To deallocate the memory, free the memory
reference; references inside the returned memory need not be individually freed.

If the DB_FAST_STAT flag has not been specified, the Db: :stat() method will access some of
or all the pages in the database, incurring a severe performance penalty as well as possibly
flushing the underlying buffer pool.

In the presence of multiple threads or processes accessing an active database, the information
returned by DB->stat may be out-of-date.

If the database was not opened read-only and the DB_FAST_STAT flag was not specified, the
cached key and record numbers will be updated after the statistical information has been
gathered.

The Db: :stat() method may not be called before the Db::open() (page 71) method is called.
The Db: :stat() method returns a non-zero error value on failure and 0 on success.
Hash Statistics

In the case of a Hash database, the statistics are stored in a structure of type DB_HASH_STAT.
The following fields will be filled in:

e uintmax_t hash_bfree;
The number of bytes free on bucket pages.
e u_int32_t hash_bigpages;
The number of hash overflow pages (created when key/data is too big for the page).
e uintmax_t hash_big_bfree;
The number of bytes free on hash overflow (big item) pages.
e u_int32_t hash_buckets;
The number of hash buckets. Returned if DB_FAST_STAT is set.
e u_int32_t hash_dup;
The number of duplicate pages.
e uintmax_t hash_dup_free;
The number of bytes free on duplicate pages.
e u_int32_t hash_ffactor;

The desired fill factor (number of items per bucket) specified at database-creation time.
Returned if DB_FAST_STAT is set.

2/17/2015

DB C++ API Page 148

Library Version 12.1.6.1 The Db Handle

u_int32_t hash_free;

The number of pages on the free list.

u_int32_t hash_magic;

Magic number that identifies the file as a Hash file. Returned if DB_FAST_STAT is set.
u_int32_t hash_metaflags;

Reports internal flags. For internal use only.

u_int32_t hash_nblobs;

The number of blobs.

u_int32_t hash_ndata;

The number of key/data pairs in the database. If DB_FAST_STAT was specified the count
will be the last saved value unless it has never been calculated, in which case it will be 0.
Returned if DB_FAST_STAT is set.

u_int32_t hash_nkeys;

The number of unique keys in the database. If DB_FAST_STAT was specified the count will be
the last saved value unless it has never been calculated, in which case it will be 0. Returned
if DB_FAST_STAT is set.

u_int32_t hash_overflows;

The number of bucket overflow pages (bucket overflow pages are created when items did
not fit on the main bucket page).

uintmax_t hash_ovfl free;

The number of bytes free on bucket overflow pages.

u_int32_t hash_pagecnt;

The number of pages in the database. Returned if DB_FAST_STAT is set.

u_int32_t hash_pagesize;

The underlying database page (and bucket) size, in bytes. Returned if DB_FAST_STAT is set.
u_int32_t hash_version;

The version of the Hash database. Returned if DB_FAST_STAT is set.

Heap Statistics

In the case of a Heap database, the statistics are stored in a structure of type DB_HEAP_STAT.
The following fields will be filled in:

2/17/2015

DB C++ API Page 149

Library Version 12.1.6.1 The Db Handle

u_int32_t heap_magic;
Magic number that identifies the file as a Heap file. Returned if DB_FAST_STAT is set.
e u_int32_t heap_metaflags;
Reports internal flags. For internal use only.
e u_int32_t heap_nblobs;
The number of blobs.
e u_int32_t heap_nrecs;
Reports the number of records in the Heap database. Returned if DB_FAST_STAT is set.
e u_int32_t heap_pagecnt;
The number of pages in the database. Returned if DB_FAST_STAT is set.
e u_int32_t heap_pagesize;
The underlying database page (and bucket) size, in bytes. Returned if DB_FAST_STAT is set.
e u_int32_t heap_nregions;
The number of regions in the Heap database. Returned if DB_FAST_STAT is set.
e u_int32_t heap_regionsize;
The number of pages in a region in the Heap database. Returned if DB_FAST_STAT is set.
e u_int32_t heap_version;
The version of the Heap database. Returned if DB_FAST_STAT is set.
Btree and Recno Statistics

In the case of a Btree or Recno database, the statistics are stored in a structure of type
DB_BTREE_STAT. The following fields will be filled in:

e u_int32_t bt_dup_pg;

Number of database duplicate pages.
e uintmax_t bt_dup_pgfree;

Number of bytes free in database duplicate pages.
e u_int32_t bt_empty pg;

Number of empty database pages.

2/17/2015 DB C++ API Page 150

Library Version 12.1.6.1 The Db Handle

u_int32_t bt_free;

Number of pages on the free list.

u_int32_t bt_int_pg;

Number of database internal pages.

uintmax_t bt_int_pgfree;

Number of bytes free in database internal pages.

u_int32_t bt_leaf_pg;

Number of database leaf pages.

uintmax_t bt_leaf_pgfree;

Number of bytes free in database leaf pages.

u_int32_t bt _levels;

Number of levels in the database.

u_int32_t bt_magic;

Magic number that identifies the file as a Btree database. Returned if DB_FAST_STAT is set.
u_int32_t bt_metaflags;

Reports internal flags. For internal use only.

u_int32_t bt_minkey;

The minimum keys per page. Returned if DB_FAST_STAT is set.

u_int32_t bt_nblobs;

The number of blobs.

u_int32_t bt_ndata;

For the Btree Access Method, the number of key/data pairs in the database. If the
DB_FAST_STAT flag is not specified, the count will be exact. Otherwise, the count will be
the last saved value unless it has never been calculated, in which case it will be 0.

For the Recno Access Method, the number of records in the database. If the database was
configured with mutable record numbers (see DB_RENUMBER), the count will be exact.
Otherwise, if the DB_FAST_STAT flag is specified the count will be exact but will include

deleted and implicitly created records; if the DB_FAST_STAT flag is not specified, the count
will be exact and will not include deleted or implicitly created records.

2/17/2015

DB C++ API Page 151

Library Version 12.1.6.1 The Db Handle

Returned if DB_FAST_STAT is set.
e u_int32_t bt_nkeys;

For the Btree Access Method, the number of keys in the database. If the DB_FAST_STAT
flag is not specified or the database was configured to support record numbers (see
DB_RECNUM), the count will be exact. Otherwise, the count will be the last saved value
unless it has never been calculated, in which case it will be 0.

For the Recno Access Method, the number of records in the database. If the database was
configured with mutable record numbers (see DB_RENUMBER), the count will be exact.
Otherwise, if the DB_FAST_STAT flag is specified the count will be exact but will include
deleted and implicitly created records; if the DB_FAST_STAT flag is not specified, the count
will be exact and will not include deleted or implicitly created records.
Returned if DB_FAST_STAT is set.

e u_int32_t bt_over_pg;
Number of database overflow pages.

e uintmax_t bt_over_pgfree;
Number of bytes free in database overflow pages.

e u_int32_t bt_pagecnt;
The number of pages in the database. Returned if DB_FAST_STAT is set.

e u_int32_t bt_pagesize;
The underlying database page size, in bytes. Returned if DB_FAST_STAT is set.

e u_int32_t bt_re_len;
The length of fixed-length records. Returned if DB_FAST_STAT is set.

e u_int32_t bt_re_pad;
The padding byte value for fixed-length records. Returned if DB_FAST_STAT is set.

e u_int32_t bt_version;
The version of the Btree database. Returned if DB_FAST_STAT is set.

Queue Statistics

In the case of a Queue database, the statistics are stored in a structure of type
DB_QUEUE_STAT. The following fields will be filled in:

e u_int32_t gs_cur_recno;

2/17/2015

DB C++ API Page 152

Library Version 12.1.6.1 The Db Handle

Next available record number. Returned if DB_FAST_STAT is set.

u_int32_t gs_extentsize;

Underlying database extent size, in pages. Returned if DB_FAST_STAT is set.

u_int32_t gs_first_recno;

First undeleted record in the database. Returned if DB_FAST_STAT is set.

u_int32_t gqs_magic;

Magic number that identifies the file as a Queue file. Returned if DB_FAST_STAT is set.
u_int32_t gs_metaflags;

Reports internal flags. For internal use only.

u_int32_t gs_nkeys;

The number of records in the database. If DB_FAST_STAT was specified the count will be the
last saved value unless it has never been calculated, in which case it will be 0. Returned if
DB_FAST_STAT is set.

u_int32_t gs_ndata;

The number of records in the database. If DB_FAST_STAT was specified the count will be the
last saved value unless it has never been calculated, in which case it will be 0. Returned if
DB_FAST_STAT is set.

u_int32_t qs_pages;

Number of pages in the database.

u_int32_t qs_pagesize;

Underlying database page size, in bytes. Returned if DB_FAST_STAT is set.

u_int32_t qs_pgfree;

Number of bytes free in database pages.

u_int32_t gs_re_len;

The length of the records. Returned if DB_FAST_STAT is set.

u_int32_t gs_re_pad;

The padding byte value for the records. Returned if DB_FAST_STAT is set.

u_int32_t gs_version;

2/17/2015

DB C++ API Page 153

Library Version 12.1.6.1 The Db Handle

The version of the Queue file type. Returned if DB_FAST_STAT is set.

Errors

The Db: :stat() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EINVAL

An invalid flag value or parameter was specified.

Class

Db

See Also

Database and Related Methods (page 3)

2/17/2015

DB C++ API Page 154

Library Version 12.1.6.1 The Db Handle

Db::stat_print()

#include <db_cxx.h>

int
Db::stat_print(u_int32_t flags);

The Db: :stat_print() method displays the database statistical information, as described
for the Db::stat() (page 147) method. The information is printed to a specified output channel
(see the DbEnv::set_msgfile() (page 327) method for more information), or passed to an
application callback function (see the DbEnv::set_msgcall() (page 325) method for more
information).

The Db: :stat_print() method may not be called before the Db::open() (page 71) method is
called.

The Db: :stat_print() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

For Berkeley DB SQL table or index statistics, see Command Line Features Unique to
dbsql (page 736).

Parameters
flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

« DB_FAST_STAT

Return only the values which do not require traversal of the database. Among other things,
this flag makes it possible for applications to request key and record counts without
incurring the performance penalty of traversing the entire database.

e DB_STAT ALL
Display all available information.
Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 155

Library Version 12.1.6.1 The Db Handle

Db::sync()

#include <db_cxx.h>

int
Db::sync(u_int32_t flags);

The Db: :sync() method flushes any cached information to disk. This method operates on
the database file level, so if the file contains multiple database handles then this method will
flush to disk any information that is cached for any of those handles.

If the database is in memory only, the Db: : sync() method has no effect and will always
succeed.

It is important to understand that flushing cached information to disk only minimizes the
window of opportunity for corrupted data. Although unlikely, it is possible for database
corruption to happen if a system or application crash occurs while writing data to the
database. To ensure that database corruption never occurs, applications must either: use
transactions and logging with automatic recovery; use logging and application-specific
recovery; or edit a copy of the database, and once all applications using the database have
successfully called Db::close() (page 13), atomically replace the original database with the
updated copy.

The Db: :sync() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The Db: :sync() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

2/17/2015

DB C++ API Page 156

Library Version 12.1.6.1 The Db Handle

EINVAL

An invalid flag value or parameter was specified.
Class

Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 157

Library Version 12.1.6.1 The Db Handle

Db::truncate()

#include <db_cxx.h>

int
Db: :truncate(DbTxn *txnid, u_int32_t *countp, u_int32_t flags);

The Db: :truncate() method empties the database, discarding all records it contains. The
number of records discarded from the database is returned in countp.

When called on a database configured with secondary indices using the Db::associate() (page
6) method, the Db: :truncate() method truncates the primary database and all secondary
indices. A count of the records discarded from the primary database is returned.

It is an error to call the Db: :truncate() method on a database with open cursors.

The Db: :truncate() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
txnid
If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 653); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 645); otherwise NULL. If no transaction handle is specified,

but the operation occurs in a transactional database, the operation will be implicitly
transaction protected.

countp

The countp parameter references memory into which the number of records discarded from
the database is copied.

flags
The flags parameter is currently unused, and must be set to 0.
Errors

The Db: :truncate() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

2/17/2015 DB C++ API Page 158

Library Version 12.1.6.1 The Db Handle

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See Db::set_Llk_exclusive() (page
126) for more information.

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If there are open cursors in the database; or if an invalid flag value or parameter was
specified.

Class
Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 159

Library Version 12.1.6.1 The Db Handle

Db::upgrade()

#include <db_cxx.h>

int
Db: :upgrade(const char *file, u_int32_t flags);

The Db: :upgrade() method upgrades all of the databases included in the file file, if
necessary. If no upgrade is necessary, Db: :upgrade() always returns success.

Database upgrades are done in place and are destructive. For example, if pages need to
be allocated and no disk space is available, the database may be left corrupted. Backups
should be made before databases are upgraded. See Upgrading databases for more
information.

Unlike all other database operations, Db: :upgrade() may only be done on a system with the
same byte-order as the database.

The Db: :upgrade() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

file

The file parameter is the physical file containing the databases to be upgraded.
flags

The flags parameter must be set to 0 or the following value:

e DB_DUPSORT

This flag is only meaningful when upgrading databases from releases before the Berkeley
DB 3.1 release.

As part of the upgrade from the Berkeley DB 3.0 release to the 3.1 release, the on-

disk format of duplicate data items changed. To correctly upgrade the format requires
applications to specify whether duplicate data items in the database are sorted or not.
Specifying the DB_DUPSORT flag informs Db: :upgrade() that the duplicates are sorted;
otherwise they are assumed to be unsorted. Incorrectly specifying the value of this flag may
lead to database corruption.

Further, because the Db: :upgrade () method upgrades a physical file (including all the
databases it contains), it is not possible to use Db: :upgrade() to upgrade files in which
some of the databases it includes have sorted duplicate data items, and some of the
databases it includes have unsorted duplicate data items. If the file does not have more
than a single database, if the databases do not support duplicate data items, or if all of the
databases that support duplicate data items support the same style of duplicates (either
sorted or unsorted), Db: :upgrade () will work correctly as long as the DB_DUPSORT flag is

2/17/2015

DB C++ API Page 160

../../programmer_reference/am_upgrade.html

Library Version 12.1.6.1 The Db Handle

correctly specified. Otherwise, the file cannot be upgraded using Db: :upgrade; () it must
be upgraded manually by dumping and reloading the databases.

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

Db: :upgrade() is affected by any database directory specified using the
DbEnv::add_data_dir() (page 220) method, or by setting the "add_data_dir" string in the
environment's DB_CONFIG file.

Errors

The Db: :upgrade() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

DB_OLD_VERSION

The database cannot be upgraded by this version of the Berkeley DB software.
Class

Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 161

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The Db Handle

Db::verify()

#include <db_cxx.h>

int
Db::verify(const char *file,
const char *database, ostream *outfile, u_int32_t flags);

The Db: :verify() method verifies the integrity of all databases in the file specified by
the file parameter, and optionally outputs the databases’ key/data pairs to the file stream
specified by the outfile parameter.

The Db: :verify() method does not perform any locking, even in Berkeley DB
environments that are configured with a locking subsystem. As such, it should only be
used on files that are not being modified by another thread of control.

The Db: :verify() method may not be called after the Db::open() (page 71) method is called.

The Db handle may not be accessed again after Db: :verify() is called, regardless of its
return.

The Db: :verify() method will return DB_VERIFY_BAD if a database is corrupted. When the
DB_SALVAGE flag is specified, the DB_VERIFY_BAD return means that all key/data pairs in the
file may not have been successfully output. Unless otherwise specified, the Db: :verify()
method either returns a non-zero error value or throws an exception that encapsulates a non-
zero error value on failure, and returns 0 on success.

Parameters

file

The file parameter is the physical file in which the databases to be verified are found.
database

The database parameter is the database in file on which the database checks for btree and
duplicate sort order and for hashing are to be performed. See the DB_ORDERCHKONLY flag for
more information.

The database parameter must be set to NULL except when the DB_ORDERCHKONLY flag is set.

outfile

The outfile parameter is an optional file stream to which the databases’ key/data pairs are
written.

flags

The flags parameter must be set to 0 or the following value:

2/17/2015

DB C++ API Page 162

Library Version 12.1.6.1 The Db Handle

e DB_SALVAGE

Write the key/data pairs from all databases in the file to the file stream named in the
outfile parameter. Key values are written for Btree, Hash and Queue databases, but not for
Recno databases.

The output format is the same as that specified for the db_dump utility, and can be used as
input for the db_load utility.

Because the key/data pairs are output in page order as opposed to the sort order used by
db_dump, using Db: :verify() to dump key/data pairs normally produces less than optimal
loads for Btree databases.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags
parameter:

e DB_AGGRESSIVE

Output all the key/data pairs in the file that can be found. By default, Db: :verify() does
not assume corruption. For example, if a key/data pair on a page is marked as deleted,

it is not then written to the output file. When DB_AGGRESSIVE is specified, corruption is
assumed, and any key/data pair that can be found is written. In this case, key/data pairs
that are corrupted or have been deleted may appear in the output (even if the file being
salvaged is in no way corrupt), and the output will almost certainly require editing before
being loaded into a database.

e DB_PRINTABLE

When using the DB_SALVAGE flag, if characters in either the key or data items are printing
characters (as defined by isprint(3)), use printing characters to represent them. This flag
permits users to use standard text editors and tools to modify the contents of databases or
selectively remove data from salvager output.

Note: different systems may have different notions about what characters are considered
printing characters, and databases dumped in this manner may be less portable to external
systems.

e DB_NOORDERCHK
Skip the database checks for btree and duplicate sort order and for hashing.

The Db: :verify() method normally verifies that btree keys and duplicate items are
correctly sorted, and hash keys are correctly hashed. If the file being verified contains
multiple databases using differing sorting or hashing algorithms, some of them must
necessarily fail database verification because only one sort order or hash function can be
specified before Db: :verify() is called. To verify files with multiple databases having
differing sorting orders or hashing functions, first perform verification of the file as a whole
by using the DB_NOORDERCHK flag, and then individually verify the sort order and hashing
function for each database in the file using the DB_ORDERCHKONLY flag.

e DB_ORDERCHKONLY

2/17/2015

DB C++ API Page 163

Library Version 12.1.6.1 The Db Handle

Perform the database checks for btree and duplicate sort order and for hashing, skipped by
DB_NOORDERCHK.

When this flag is specified, a database parameter should also be specified, indicating
the database in the physical file which is to be checked. This flag is only safe to use on
databases that have already successfully been verified using Db: :verify() with the
DB_NOORDERCHK flag set.

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

Db: :verify() is affected by any database directory specified using the
DbEnv::add_data_dir() (page 220) method, or by setting the "add_data_dir" string in the
environment's DB_CONFIG file.

Errors

The Db: :verify() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after Db::open() (page 71) was called; or if an invalid flag value or
parameter was specified.

ENOENT

The file or directory does not exist.
Class

Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 164

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The Db Handle

DbHeapRecordId

#include <db_cxx.h>

class _exported DbHeapRecordId : private DB_HEAP_RID
{
public:
db_pgno_t get_pgno() const { return pgno; }
void set_pgno(db_pgno_t value) { pgno = value; }

db_indx_t get_indx() const { return indx; }
void set_indx(db_indx_t value) { indx = value; }

DB_HEAP_RID *get DB_HEAP_RID() { return (DB_HEAP_RID *)this; }
const DB_HEAP_RID *get const DB_HEAP_RID() const
{ return (const DB_HEAP_RID *)this; }

static DbHeapRecordId* get DbHeapRecordId(DB_HEAP_RID *rid)
{ return (DbHeapRecordId *)rid; }

static const DbHeapRecordId* get_ const_DbHeapRecordId(DB_HEAP_RID *rid)
{ return (const DbHeapRecordId *)rid; }

DbHeapRecordId(db_pgno_t pgno, db_indx_t indx);
DbHeapRecordId();

~DbHeapRecordId();

DbHeapRecordId(const DbHeapRecordId &);
DbHeapRecordId &operator = (const DbHeapRecordId &);

}s

Content used for the key in a Heap database record. Berkeley DB instantiates an object of this
class for you when you create a record in a Heap database. You should never instantiate an
object of this class or modify the contents of this class yourself; Berkeley DB must create and
manage it for you.

This object is returned in the key Dbt parameter of the method that you use to add a record
to the Heap database.

Class Methods

get_pgno()

Returns the database page number where the record is stored.
get_indx()

Returns the index in the offset table where the record can be found.
get_DB_HEAP_RID()

Returns a pointer to the underlying C-language structure used to store the database page
number and offset table index information.

2/17/2015

DB C++ API Page 165

Library Version 12.1.6.1 The Db Handle

set_pgno()

For internal use only. Changing the offset index has unpredictable results.

set_indx()

For internal use only. Changing the offset index has unpredictable results.

See Also

Database and Related Methods (page 3),

2/17/2015 DB C++ API Page 166

Chapter 3. The Dbc Handle

A Dbc object is a handle for a cursor into a Berkeley DB database.

Dbc handles are not free-threaded. Cursor handles may be shared by multiple threads if
access is serialized by the application.

You create a Dbc using the Db::cursor() (page 169) method.

If the cursor is to be used to perform operations on behalf of a transaction, the cursor must be
opened and closed within the context of that single transaction.

Once Dbc::close() (page 172) has been called, the handle may not be accessed again,
regardless of the method's return.

2/17/2015

DB C++ API Page 167

Library Version 12.1.6.1

The Dbc Handle

Database Cursors and Related Methods

Database Cursors and Related
Methods

Description

Db::cursor()

Create a cursor handle

Dbc::close() Close a cursor handle

Dbc::cmp() Compare two cursors for equality.
Dbc::count() Return count of duplicates for current key
Dbc::del() Delete current key/data pair

Dbc::dup() Duplicate the cursor handle

Dbc::get() Retrieve by cursor

Dbc::put() Store by cursor

Dbc::set_priority(), Dbc::get_priority() Set/get the cursor's cache priority

2/17/2015

DB C++ API

Page 168

Library Version 12.1.6.1 The Dbc Handle

Db::cursor()

#include <db_cxx.h>

int
Db: :cursor(DbTxn *txnid, Dbc **cursorp, u_int32_t flags);

The Db: : cursor() method returns a created database cursor.

Cursors may span threads, but only serially, that is, the application must serialize access to
the cursor handle.

The Db: : cursor() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

txnid

To transaction-protect cursor operations, cursors must be opened and closed within the
context of a transaction. The txnid parameter specifies the transaction context in which the
cursor may be used.

Cursor operations are not automatically transaction-protected, even if the DB_AUTO_COMMIT
flag is specified to the DbEnv::set_flags() (page 308) or Db::open() (page 71) methods. If
cursor operations are to be transaction-protected, the txnid parameter must be a transaction
handle returned from DbEnv::txn_begin() (page 653); otherwise, NULL.

cursorp

The cursorp parameter references memory into which a pointer to the allocated cursor is
copied.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

« DB_CURSOR_BULK

Configure a cursor to optimize for bulk operations. Each successive operation on a cursor
configured with this flag attempts to continue on the same database page as the previous
operation, falling back to a search if a different page is required. This avoids searching

if there is a high degree of locality between cursor operations. This flag is currently only

effective with the btree access method. For other access methods, this flag is ignored.

e DB_READ_COMMITTED

Configure a transactional cursor to have degree 2 isolation. This ensures the stability of the
current data item read by this cursor but permits data read by this cursor to be modified or
deleted prior to the commit of the transaction for this cursor.

2/17/2015

DB C++ API Page 169

Library Version 12.1.6.1 The Dbc Handle

e DB_READ_UNCOMMITTED

Configure a transactional cursor to have degree 1 isolation. Read operations performed
by the cursor may return modified but not yet committed data. Silently ignored if the
DB_READ_UNCOMMITTED flag was not specified when the underlying database was opened.

e DB_WRITECURSOR

Specify that the cursor will be used to update the database. The underlying database
environment must have been opened using the DB_INIT_CDB flag.

e DB_TXN_SNAPSHOT

Configure a transactional cursor to operate with read-only snapshot isolation. For databases
with the DB_MULTIVERSION flag set, data values will be read as they are when the cursor is
opened, without taking read locks.

This flag implicitly begins a transaction that is committed when the cursor is closed.

This flag is silently ignored if DB_MULTIVERSION is not set on the underlying database or if
a transaction is supplied in the txnid parameter. Snapshot isolation is not supported with
replication.

Errors

The Db: : cursor() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EINVAL
An invalid flag value or parameter was specified.
Class

Db

2/17/2015 DB C++ API Page 170

../../programmer_reference/transapp_read.html

Library Version 12.1.6.1 The Dbc Handle

See Also

Database Cursors and Related Methods (page 168)

2/17/2015 DB C++ API Page 171

Library Version 12.1.6.1 The Dbc Handle

Dbc::close()

#include <db_cxx.h>

int
Dbc::close(void);

The Dbc: :close() method discards the cursor.

It is possible for the Dbc: :close() method to return DB_LOCK_DEADLOCK, signaling that any
enclosing transaction should be aborted. If the application is already intending to abort the
transaction, this error should be ignored, and the application should proceed.

After the Dbc: :close() method has been called, regardless of its return value, you can not
use the cursor handle again.

It is not required to close the cursor explicitly before closing the database handle or the
transaction handle that owns this cursor because, closing a database handle or a transaction
handle closes those open cursors.

However, it is recommended that you always close all cursor handles immediately after their
use to promote concurrency and to release resources such as page locks.

The Dbc: :close() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Errors

The Dbc: :close() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See Db::set_Llk_exclusive() (page
126) for more information.

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.

2/17/2015

DB C++ API Page 172

../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK

Library Version 12.1.6.1 The Dbc Handle

Class

Dbc

See Also

Database Cursors and Related Methods (page 168)

2/17/2015 DB C++ API Page 173

Library Version 12.1.6.1 The Dbc Handle

Dbc::cmp()

#include <db_cxx.h>

int
Dbc::cmp(Dbc *other_cursor, int *result, u_int32_t flags);

The Dbc: :cmp () method compares two cursors for equality. Two cursors are equal if and only
if they are positioned on the same item in the same database.

The Dbc: :cmp () method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

other_cursor

The other_cursor parameter references another cursor handle that will be used as the
comparator.

result

If the call is successful and both cursors are positioned on the same item, result is set to zero.
If the call is successful but the cursors are not positioned on the same item, result is set to a
non-zero value. If the call is unsuccessful, the value of result should be ignored.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The Dbc: : cmp() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

EINVAL
« If either of the cursors are already closed.

« If the cursors have been opened against different databases.

If either of the cursors have not been positioned.

If the other_dbc parameter is NULL.

If the result parameter is NULL.

Class

Dbc

2/17/2015 DB C++ API Page 174

Library Version 12.1.6.1 The Dbc Handle

See Also

Database Cursors and Related Methods (page 168)

2/17/2015 DB C++ API Page 175

Library Version 12.1.6.1 The Dbc Handle

Dbc::count()

#include <db_cxx.h>

int
Dbc: :count(db_recno_t *countp, u_int32_t flags);

The Dbc: : count () method returns a count of the number of data items for the key to which
the cursor refers.

The Dbc: : count () method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
countp

The countp parameter references memory into which the count of the number of duplicate
data items is copied.

flags
The flags parameter is currently unused, and must be set to 0.
Errors

The Dbc: : count () method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EINVAL
If the cursor has not been initialized; or if an invalid flag value or parameter was specified.
Class

Dbc

2/17/2015 DB C++ API Page 176

Library Version 12.1.6.1 The Dbc Handle

See Also

Database Cursors and Related Methods (page 168)

2/17/2015 DB C++ API Page 177

Library Version 12.1.6.1 The Dbc Handle

Dbc::del()

#include <db_cxx.h>

int
Dbc::del(u_int32_t flags);

The Dbc: :del() method deletes the key/data pair to which the cursor refers.

When called on a cursor opened on a database that has been made into a secondary index
using the Db::associate() (page 6) method, the Db::del() (page 23) method deletes the key/
data pair from the primary database and all secondary indices.

The cursor position is unchanged after a delete, and subsequent calls to cursor functions
expecting the cursor to refer to an existing key will fail.

The Dbc: :del() method will return DB_KEYEMPTY if the element has already been deleted.
The Dbc: :del() method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags
The flags parameter must be set to 0 or one of the following values:
e DB_CONSUME

If the database is of type DB_QUEUE then this flag may be set to force the head of the
queue to move to the first non-deleted item in the queue. Normally this is only done if the
deleted item is exactly at the head when deleted.

Errors

The Dbc: :del() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DB_FOREIGN_CONFLICT
A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for
that record does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 11) was declared for a foreign key database, and then
subsequently a record was deleted from the foreign key database without first removing
it from the constrained secondary database.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

2/17/2015

DB C++ API Page 178

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 12.1.6.1 The Dbc Handle

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See Db::set_Llk_exclusive() (page
126) for more information.

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw
a DbRepHandleDeadException (page 353) (if your application is configured to throw

exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EACCES

An attempt was made to modify a read-only database.

EINVAL

If the cursor has not been initialized; or if an invalid flag value or parameter was specified.
EPERM

Write attempted on read-only cursor when the DB_INIT_CDB flag was specified to
DbEnv::open() (page 271).

Class

Dbc

2/17/2015 DB C++ API Page 179

Library Version 12.1.6.1 The Dbc Handle

See Also

Database Cursors and Related Methods (page 168)

2/17/2015 DB C++ API Page 180

Library Version 12.1.6.1 The Dbc Handle

Dbc::dup()

#include <db_cxx.h>

int
Dbc: :dup(Dbc **cursorp, u_int32_t flags);
The Dbc: :dup () method creates a new cursor that uses the same transaction and locker ID as

the original cursor. This is useful when an application is using locking and requires two or more
cursors in the same thread of control.

The Dbc: :dup () method either returns a non-zero error value or throws an exception that
encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

cursorp

The Dbc: :dup() method returns the newly created cursor in cursorp.
flags

The flags parameter must be set to 0 or the following flag:

e DB_POSITION

The newly created cursor is initialized to refer to the same position in the database as
the original cursor (if any) and hold the same locks (if any). If the DB_POSITION flag is
not specified, or the original cursor does not hold a database position and locks, the
created cursor is uninitialized and will behave like a cursor newly created using the
Db::cursor() (page 169) method.

Errors

The Dbc: :dup() method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

2/17/2015

DB C++ API Page 181

Library Version 12.1.6.1 The Dbc Handle

EINVAL

An invalid flag value or parameter was specified.

Class

Dbc

See Also

Database Cursors and Related Methods (page 168)

2/17/2015 DB C++ API Page 182

Library Version 12.1.6.1 The Dbc Handle

Dbc::get()

#include <db_cxx.h>

int
Dbc::get(Dbt *key, Dbt *data, u_int32_t flags);

int
Dbc: :pget(Dbt *key, Dbt *pkey, Dbt *data, u_int32_t flags);

The Dbc: :get () method retrieves key/data pairs from the database. The address and length
of the key are returned in the object to which key refers (except for the case of the DB_SET
flag, in which the key object is unchanged), and the address and length of the data are
returned in the object to which data refers.

When called on a cursor opened on a database that has been made into a secondary index
using the Db::associate() (page 6) method, the Dbc: :get() and Dbc: :pget() methods return
the key from the secondary index and the data item from the primary database. In addition,
the Dbc: :pget () method returns the key from the primary database. In databases that are
not secondary indices, the Dbc: :pget() method will always fail.

Modifications to the database during a sequential scan will be reflected in the scan; that
is, records inserted behind a cursor will not be returned while records inserted in front of a
cursor will be returned.

In Queue and Recno databases, missing entries (that is, entries that were never explicitly
created or that were created and then deleted) will be skipped during a sequential scan.

Unless otherwise specified, the Dbc: : get() method either returns a non-zero error value

or throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

If Dbc: :get () fails for any reason, the state of the cursor will be unchanged.

Parameters

key
The key Dbt operated on.

If DB_DBT_PARTIAL is set for the Dbt used for this parameter, and if the flags parameter is set
to DB_GET_BOTH, DB_GET_BOTH_RANGE, DB_SET, or DB_SET_RECNO, then this method will
fail and return EINVAL.

pkey

The return key from the primary database. If DB_DBT_PARTIAL is set for the Dbt used for this
parameter, then this method will fail and return EINVAL.

data

The data Dbt operated on.

2/17/2015

DB C++ API Page 183

Library Version 12.1.6.1 The Dbc Handle

flags
The flags parameter must be set to one of the following values:

e DB_CURRENT

Return the key/data pair to which the cursor refers.

The Dbc: :get() method will return DB_KEYEMPTY if DB_CURRENT is set and the cursor
key/data pair was deleted.

e DB_FIRST

The cursor is set to refer to the first key/data pair of the database, and that pair is
returned. If the first key has duplicate values, the first data item in the set of duplicates is
returned.

If the database is a Queue or Recno database, Dbc: :get () using the DB_FIRST flag will
ignore any keys that exist but were never explicitly created by the application, or were
created and later deleted.

The Dbc: :get () method will return DB_NOTFOUND if DB_FIRST is set and the database is
empty.

DB_GET_BOTH

Move the cursor to the specified key/data pair of the database. The cursor is positioned
to a key/data pair if both the key and data match the values provided on the key and data
parameters.

In all other ways, this flag is identical to the DB_SET flag.

When used with Dbc: :pget() on a secondary index handle, both the secondary and primary
keys must be matched by the secondary and primary key item in the database. It is an error
to use the DB_GET_BOTH flag with the Dbc: :get() version of this method and a cursor that
has been opened on a secondary index handle.

DB_GET_BOTH_RANGE

Move the cursor to the specified key/data pair of the database. The key parameter must
be an exact match with a key in the database. The data item retrieved is the item in a
duplicate set that is the smallest value which is greater than or equal to the value provided
by the data parameter (as determined by the comparison function). If this flag is specified
on a database configured without sorted duplicate support, the behavior is identical to the
DB_GET_BOTH flag. Returns the datum associated with the given key/data pair.

In all other ways, this flag is identical to the DB_GET_BOTH flag.
DB_GET_RECNO

Return the record number associated with the cursor. The record number will be returned in
data, as described in Dbt. The key parameter is ignored.

2/17/2015

DB C++ API Page 184

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 12.1.6.1 The Dbc Handle

For DB_GET_RECNO to be specified, the underlying database must be of type Btree, and it
must have been created with the DB_RECNUM flag.

When called on a cursor opened on a database that has been made into a secondary index,
the Dbc: :get() and Dbc: :pget() methods return the record number of the primary
database in data. In addition, the Dbc: :pget() method returns the record number of the
secondary index in pkey. If either underlying database is not of type Btree or is not created
with the DB_RECNUM flag, the out-of-band record number of 0 is returned.

DB_JOIN_ITEM

Do not use the data value found in all of the cursors as a lookup key for the primary
database, but simply return it in the key parameter instead. The data parameter is left
unchanged.

For DB_JOIN_ITEM to be specified, the underlying cursor must have been returned from the
Db::join() (page 65) method.

This flag is not supported for Heap databases.
DB_LAST

The cursor is set to refer to the last key/data pair of the database, and that pair is
returned. If the last key has duplicate values, the last data item in the set of duplicates is
returned.

If the database is a Queue or Recno database, Dbc: :get () using the DB_LAST flag will
ignore any keys that exist but were never explicitly created by the application, or were
created and later deleted.

The Dbc: :get () method will return DB_NOTFOUND if DB_LAST is set and the database is
empty.

DB_NEXT

If the cursor is not yet initialized, DB_NEXT is identical to DB_FIRST. Otherwise, the cursor is
moved to the next key/data pair of the database, and that pair is returned. In the presence
of duplicate key values, the value of the key may not change.

If the database is a Queue or Recno database, Dbc: :get() using the DB_NEXT flag will skip
any keys that exist but were never explicitly created by the application, or those that were
created and later deleted.

The Dbc: : get () method will return DB_NOTFOUND if DB_NEXT is set and the cursor is
already on the last record in the database.

DB_NEXT_DUP

If the next key/data pair of the database is a duplicate data record for the current key/
data pair, the cursor is moved to the next key/data pair of the database, and that pair is
returned.

2/17/2015

DB C++ API Page 185

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 12.1.6.1 The Dbc Handle

The Dbc: :get() method will return DB_NOTFOUND if DB_NEXT_DUP is set and the next
key/data pair of the database is not a duplicate data record for the current key/data pair.

If using a Heap database, this flag results in this method returning DB_NOTFOUND.
DB_NEXT_NODUP

If the cursor is not yet initialized, DB_NEXT_NODUP is identical to DB_FIRST. Otherwise, the
cursor is moved to the next non-duplicate key of the database, and that key/data pair is
returned.

If the database is a Queue or Recno database, Dbc: :get () using the DB_NEXT_NODUP flag
will ignore any keys that exist but were never explicitly created by the application, or those
that were created and later deleted.

The Dbc: :get() method will return DB_NOTFOUND if DB_NEXT_NODUP is set and no non-
duplicate key/data pairs exist after the cursor position in the database.

If using a Heap database, this flag is identical to the DB_NEXT flag.
DB_PREV

If the cursor is not yet initialized, DB_PREV is identical to DB_LAST. Otherwise, the cursor
is moved to the previous key/data pair of the database, and that pair is returned. In the
presence of duplicate key values, the value of the key may not change.

If the database is a Queue or Recno database, Dbc: :get() using the DB_PREV flag will skip
any keys that exist but were never explicitly created by the application, or those that were
created and later deleted.

The Dbc: : get() method will return DB_NOTFOUND if DB_PREV is set and the cursor is
already on the first record in the database.

DB_PREV_DUP
If the previous key/data pair of the database is a duplicate data record for the current key/
data pair, the cursor is moved to the previous key/data pair of the database, and that pair is

returned.

The Dbc: :get () method will return DB_NOTFOUND if DB_PREV_DUP is set and the previous
key/data pair of the database is not a duplicate data record for the current key/data pair.

If using a Heap database, this flag results in this method returning DB_NOTFOUND.
DB_PREV_NODUP
If the cursor is not yet initialized, DB_PREV_NODUP is identical to DB_LAST. Otherwise, the

cursor is moved to the previous non-duplicate key of the database, and that key/data pair is
returned.

2/17/2015

DB C++ API Page 186

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 12.1.6.1 The Dbc Handle

If the database is a Queue or Recno database, Dbc: :get() using the DB_PREV_NODUP flag
will ignore any keys that exist but were never explicitly created by the application, or those
that were created and later deleted.

The Dbc: :get () method will return DB_NOTFOUND if DB_PREV_NODUP is set and no non-
duplicate key/data pairs exist before the cursor position in the database.

If using a Heap database, this flag is identical to the DB_PREV flag.
DB_SET

Move the cursor to the specified key/data pair of the database, and return the datum
associated with the given key.

The Dbc: :get () method will return DB_NOTFOUND if DB_SET is set and no matching

keys are found. The Dbc: :get() method will return DB_KEYEMPTY if DB_SET is set and
the database is a Queue or Recno database, and the specified key exists, but was never
explicitly created by the application or was later deleted. In the presence of duplicate key
values, Dbc: :get () will return the first data item for the given key.

DB_SET_RANGE

Move the cursor to the specified key/data pair of the database. In the case of the Btree
access method, the key is returned as well as the data item and the returned key/data pair
is the smallest key greater than or equal to the specified key (as determined by the Btree
comparison function), permitting partial key matches and range searches.

In all other ways the behavior of this flag is the same as the DB_SET flag.
DB_SET_RECNO

Move the cursor to the specific numbered record of the database, and return the associated
key/data pair. The data field of the specified key must be a pointer to a memory location
from which a db_recno_t may be read, as described in Dbt. This memory location will be
read to determine the record to be retrieved.

For DB_SET_RECNO to be specified, the underlying database must be of type Btree, and it
must have been created with the DB_RECNUM flag.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags
parameter:

+ DB_IGNORE_LEASE

This flag is relevant only when using a replicated environment.

Return the data item irrespective of the state of master leases. The item will be returned
under all conditions: if master leases are not configured, if the request is made to a client,
if the request is made to a master with a valid lease, or if the request is made to a master
without a valid lease.

2/17/2015

DB C++ API Page 187

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 12.1.6.1 The Dbc Handle

e DB_READ_COMMITTED

Configure a transactional get operation to have degree 2 isolation (the read is not
repeatable).

DB_READ_UNCOMMITTED

Database items read during a transactional call will have degree 1 isolation, including
modified but not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag
was not specified when the underlying database was opened.

DB_MULTIPLE
Return multiple data items in the data parameter.

In the case of Btree or Hash databases, duplicate data items for the current key, starting

at the current cursor position, are entered into the buffer. Subsequent calls with both the
DB_NEXT_DUP and DB_MULTIPLE flags specified will return additional duplicate data items
associated with the current key or DB_NOTFOUND if there are no additional duplicate data
items to return. Subsequent calls with both the DB_NEXT and DB_MULTIPLE flags specified
will return additional duplicate data items associated with the current key or if there are no
additional duplicate data items will return the next key and its data items or DB_NOTFOUND
if there are no additional keys in the database.

In the case of Queue, Recno, or Heap databases, data items starting at the current cursor
position are entered into the buffer. The record number (or the RID, in the case of Heap)
of the first record will be returned in the key parameter. For Queue and Recno, the record
number of each subsequent returned record must be calculated from this value. For Heap
databases, the RID of subsequent returned records cannot be known. Subsequent calls with
the DB_MULTIPLE flag specified will return additional data items or DB_NOTFOUND if there
are no additional data items to return.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying
database, aligned for unsigned integer access, and be a multiple of 1024 bytes in size.

If the buffer size is insufficient, then upon return from the call the size field of the data
parameter will have been set to an estimated buffer size, and the error DB_BUFFER_SMALL
is returned. (The size is an estimate as the exact size needed may not be known until all
entries are read. It is best to initially provide a relatively large buffer, but applications
should be prepared to resize the buffer as necessary and repeatedly call the method.)

The multiple data items can be iterated over using the DbMultipleDatalterator (page 204)
class.

The DB_MULTIPLE flag may only be used with the DB_CURRENT, DB_FIRST, DB_GET_BOTH,
DB_GET_BOTH_RANGE, DB_NEXT, DB_NEXT_DUP, DB_NEXT_NODUP, DB_SET, DB_SET_RANGE,
and DB_SET_RECNO options. The DB_MULTIPLE flag may not be used when accessing
databases made into secondary indices using the Db::associate() (page 6) method.

e DB_MULTIPLE_KEY

2/17/2015

DB C++ API Page 188

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 12.1.6.1 The Dbc Handle

Return multiple key and data pairs in the data parameter.

Key and data pairs, starting at the current cursor position, are entered into the buffer.
Subsequent calls with both the DB_NEXT and DB_MULTIPLE_KEY flags specified will return
additional key and data pairs or DB_NOTFOUND if there are no additional key and data items
to return.

In the case of Btree, Hash or Heap databases, the multiple key and data pairs can be
iterated over using the DbMultipleKeyDatalterator (page 206) class.

In the case of Queue or Recno databases, the multiple record number and data pairs can be
iterated over using the DbMultipleRecnoDatalterator (page 208) class.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying
database, aligned for unsigned integer access, and be a multiple of 1024 bytes in size.

If the buffer size is insufficient, then upon return from the call the size field of the data
parameter will have been set to an estimated buffer size, and the error DB_BUFFER_SMALL
is returned. (The size is an estimate as the exact size needed may not be known until all
entries are read. It is best to initially provide a relatively large buffer, but applications
should be prepared to resize the buffer as necessary and repeatedly call the method.)

The DB_MULTIPLE_KEY flag may only be used with the DB_CURRENT, DB_FIRST,
DB_GET_BOTH, DB_GET_BOTH_RANGE, DB_NEXT, DB_NEXT_DUP, DB_NEXT_NODUP, DB_SET,
DB_SET_RANGE, and DB_SET_RECNO options. The DB_MULTIPLE_KEY flag may not be used
when accessing databases made into secondary indices using the Db::associate() (page 6)
method.

DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured.
Setting this flag can eliminate deadlock during a read-modify-write cycle by acquiring the
write lock during the read part of the cycle so that another thread of control acquiring a
read lock for the same item, in its own read-modify-write cycle, will not result in deadlock.

The Dbc: :get () method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DbMemoryException or DB_BUFFER_SMALL
The requested item could not be returned due to undersized buffer.

DbMemoryException (page 352) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_BUFFER_SMALL is returned.

DbDeadlockException or DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

2/17/2015

DB C++ API Page 189

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 12.1.6.1 The Dbc Handle

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See Db::set_Llk_exclusive() (page
126) for more information.

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DB_REP_LEASE_EXPIRED

The operation failed because the site's replication master lease has expired.
DbDeadlockException or DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

DB_SECONDARY_BAD
A secondary index references a nonexistent primary key.
EINVAL

If the DB_CURRENT, DB_NEXT_DUP or DB_PREV_DUP flags were specified and the cursor has
not been initialized; the Dbc: : pget () method was called with a cursor that does not refer to
a secondary index; or if an invalid flag value or parameter was specified.

Class

Dbc

See Also

Database Cursors and Related Methods (page 168)

2/17/2015

DB C++ API Page 190

Library Version 12.1.6.1 The Dbc Handle

Dbc::get_priority()

#include <db_cxx.h>

int
Dbc::get_priority(DB_CACHE_PRIORITY *priorityp);

The Dbc::get_priority() method returns the cache priority for pages referenced by the Dbc
handle.

The Dbc::get_priority() method may be called at any time during the life of the
application.

The Dbc::get_priority() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

priorityp

The Dbc::get_priority() method returns a reference to the cache priority for pages
referenced by the Dbc handle in priorityp.

Class
Dbc
See Also

Database Cursors and Related Methods (page 168)

2/17/2015 DB C++ API Page 191

Library Version 12.1.6.1 The Dbc Handle

Dbc::put()

#include <db_cxx.h>

int
Dbc::put(Dbt *key, Dbt *data, u_int32_t flags);

The Dbc: :put () method stores key/data pairs into the database.

Unless otherwise specified, the Dbc: :put() method either returns a non-zero error value

or throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

If Dbc: :put() fails for any reason, the state of the cursor will be unchanged. If Dbc: :put()
succeeds and an item is inserted into the database, the cursor is always positioned to refer to
the newly inserted item.

Parameters

key
The key Dbt operated on.

If creating a new record in a Heap database, the key Dbt must be empty. The put method will
return the new record's Record ID (RID) in the key Dbt.

data

The data Dbt operated on.

flags

The flags parameter must be set to one of the following values:

e DB_AFTER

In the case of the Btree and Hash access methods, insert the data element as a duplicate
element of the key to which the cursor refers. The new element appears immediately after
the current cursor position. It is an error to specify DB_AFTER if the underlying Btree or
Hash database is not configured for unsorted duplicate data items. The key parameter is
ignored.

In the case of the Recno access method, it is an error to specify DB_AFTER if the underlying
Recno database was not created with the DB_RENUMBER flag. If the DB_RENUMBER flag
was specified, a new key is created, all records after the inserted item are automatically
renumbered, and the key of the new record is returned in the structure to which the key
parameter refers. The initial value of the key parameter is ignored. See Db::open() (page
71) for more information.

The DB_AFTER flag may not be specified to the Queue access method.

2/17/2015

DB C++ API Page 192

Library Version 12.1.6.1 The Dbc Handle

The Dbc: : put() method will return DB_NOTFOUND if the current cursor record has already
been deleted and the underlying access method is Hash.

DB_BEFORE

In the case of the Btree and Hash access methods, insert the data element as a duplicate
element of the key to which the cursor refers. The new element appears immediately
before the current cursor position. It is an error to specify DB_AFTER if the underlying Btree
or Hash database is not configured for unsorted duplicate data items. The key parameter is
ignored.

In the case of the Recno access method, it is an error to specify DB_BEFORE if the
underlying Recno database was not created with the DB_RENUMBER flag. If the
DB_RENUMBER flag was specified, a new key is created, the current record and all records
after it are automatically renumbered, and the key of the new record is returned in the
structure to which the key parameter refers. The initial value of the key parameter is
ignored. See Db::open() (page 71) for more information.

The DB_BEFORE flag may not be specified to the Queue access method.

The Dbc: : put() method will return DB_NOTFOUND if the current cursor record has already
been deleted and the underlying access method is Hash.

DB_CURRENT

Overwrite the data of the key/data pair to which the cursor refers with the specified data
item. The key parameter is ignored.

The Dbc: :put () method will return DB_NOTFOUND if the current cursor record has already
been deleted.

DB_KEYFIRST
Insert the specified key/data pair into the database.

If the underlying database supports duplicate data items, and if the key already exists in
the database and a duplicate sort function has been specified, the inserted data item is
added in its sorted location. If the key already exists in the database and no duplicate sort
function has been specified, the inserted data item is added as the first of the data items
for that key.

DB_KEYLAST
Insert the specified key/data pair into the database.

If the underlying database supports duplicate data items, and if the key already exists in
the database and a duplicate sort function has been specified, the inserted data item is
added in its sorted location. If the key already exists in the database, and no duplicate sort
function has been specified, the inserted data item is added as the last of the data items
for that key.

2/17/2015

DB C++ API Page 193

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 12.1.6.1 The Dbc Handle

e DB_NODUPDATA

In the case of the Btree and Hash access methods, insert the specified key/data pair into
the database, unless a key/data pair comparing equally to it already exists in the database.
If a matching key/data pair already exists in the database, DB_KEYEXIST (page 194) is
returned. The DB_NODUPDATA flag may only be specified if the underlying database has
been configured to support sorted duplicate data items.

The DB_NODUPDATA flag may not be specified to the Queue or Recno access methods.

Errors

The Dbc: :put () method may fail and throw a DbException exception, encapsulating one of
the following non-zero errors, or return one of the following non-zero errors:

DB_KEYEXIST

An attempt was made to insert a duplicate key into a database not configured for duplicate
data.

DB_FOREIGN_CONFLICT
A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for
that record does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 11) was declared for a foreign key database, and then
subsequently a record was deleted from the foreign key database without first removing
it from the constrained secondary database.

DB_HEAP_FULL

An attempt was made to add or update a record in a Heap database. However, the size of the
database was constrained using the Db::set_heapsize() (page 123) method, and that limit has
been reached.

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See Db::set_Llk_exclusive() (page
126) for more information.

2/17/2015

DB C++ API Page 194

Library Version 12.1.6.1 The Dbc Handle

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

DbRepHandleDeadException or DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will throw

a DbRepHandleDeadException (page 353) (if your application is configured to throw
exceptions), or return DB_REP_HANDLE_DEAD. The application will need to discard the handle
and open a new one in order to continue processing.

DbDeadlockException or DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_REP_LOCKOUT is returned.

EACCES
An attempt was made to modify a read-only database.
EINVAL

If the DB_AFTER, DB_BEFORE or DB_CURRENT flags were specified and the cursor has not been
initialized; the DB_AFTER or DB_BEFORE flags were specified and a duplicate sort function

has been specified; the DB_CURRENT flag was specified, a duplicate sort function has been
specified, and the data item of the referenced key/data pair does not compare equally to the
data parameter; the DB_AFTER or DB_BEFORE flags were specified, and the underlying access
method is Queue; an attempt was made to add a record to a fixed-length database that was
too large to fit; an attempt was made to add a record to a secondary index; or if an invalid
flag value or parameter was specified.

EPERM

Write attempted on read-only cursor when the DB_INIT_CDB flag was specified to
DbEnv::open() (page 271).

Class
Dbc

See Also

Database Cursors and Related Methods (page 168)

2/17/2015 DB C++ API Page 195

Library Version 12.1.6.1 The Dbc Handle

Dbc::set_priority()

#include <db_cxx.h>

int
Dbc::set_priority(DB_CACHE_PRIORITY priority);
Set the cache priority for pages referenced by the Dbc handle.

The priority of a page biases the replacement algorithm to be more or less likely to discard a
page when space is needed in the buffer pool. The bias is temporary, and pages will eventually
be discarded if they are not referenced again. The Dbc: :set_priority() method is only
advisory, and does not guarantee pages will be treated in a specific way.

The Dbc::set_priority() method may be called at any time during the life of the
application.

The Dbc: :set_priority() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
priority
The priority parameter must be set to one of the following values:
e DB_PRIORITY_VERY_LOW
The lowest priority: pages are the most likely to be discarded.
e DB_PRIORITY_LOW
The next lowest priority.
e DB_PRIORITY_DEFAULT
The default priority.
o DB_PRIORITY_HIGH
The next highest priority.
« DB_PRIORITY_VERY_HIGH
The highest priority: pages are the least likely to be discarded.
Class
Dbc

See Also

Database Cursors and Related Methods (page 168)

2/17/2015 DB C++ API Page 196

Chapter 4. The Dbt Handle

#include <db_cxx.h>

class Dbt {

public:
Dbt(void *data, size_t size);
Dbt();
Dbt(const Dbt &);
Dbt &operator = (const Dbt &);
~Dbt();

void *get_data() const;
void set data(void *);

u_int32 t get size() const;
void set size(u_int32 t);

u_int32 t get ulen() const;
void set ulen(u_int32 t);

u_int32 t get dlen() const;
void set _dlen(u_int32 t);

u_int32 t get doff() const;
void set doff(u_int32 t);

u_int32_t get_flags() const;
void set flags(u_int32 t);

DBT *Dbt::get DBT();

const DBT *Dbt::get const DBT() const;

static Dbt *Dbt::get Dbt(DBT *dbt);

static const Dbt *Dbt::get_const_Dbt(const DBT *dbt);
¥

The Dbt class is used to encode key and data items in a Berkeley DB database.

Storage and retrieval for the Db access methods are based on key/data pairs. Both key and
data items are represented by Dbt objects. Key and data byte strings may refer to strings
of zero length up to strings of essentially unlimited length. See Database limits for more
information.

In the case when the flags structure element is set to 0, when the application is providing
Berkeley DB a key or data item to store into the database, Berkeley DB expects the data
object to point to a byte string of size bytes. When returning a key/data item to the
application, Berkeley DB will store into the data object a pointer to a byte string of size
bytes, and the memory to which the pointer refers will be allocated and managed by Berkeley
DB. Note that using the default flags for returned Dbts is only compatible with single threaded
usage of Berkeley DB.

2/17/2015

DB C++ API Page 197

../../programmer_reference/am_misc_dbsizes.html

Library Version 12.1.6.1 The Dbt Handle

Access to Dbt objects is not re-entrant. In particular, if multiple threads simultaneously access
the same Dbt object using Db API calls, the results are undefined, and may result in a crash.
One easy way to avoid problems is to use Dbt objects that are constructed as stack variables.

Each Dbt object has an associated DBT struct, which is used by the underlying implementation
of Berkeley DB and its C-language API. The Dbt: :get_DBT() method returns a pointer to this

struct. Given a const Dbt object, Dbt: :get_const_DBT() returns a const pointer to the same
struct.

Given a DBT struct, the Dbt: :get_Dbt () method returns the corresponding Dbt object, if
there is one. If the DBT object was not associated with a Dbt (that is, it was not returned from
a call to Dbt: :get_DBT()), then the result of Dbt: :get_Dbt() is undefined. Given a const
DBT struct, Dbt: :get_const_Dbt() returns the associated const Dbt object, if there is one.

These methods may be useful for Berkeley DB applications including both C and C++ language
software. It should not be necessary to use these calls in a purely C++ application.

e Dbt::set_data(void *data)

Set the data array.

The data parameter is an array of bytes to be used to set the content for the Dbt.
e Dbt::get_data()

Return the data array.
e Dbt::set_size(u_int32_t size)

Sets the byte size of the data array, in bytes.
e Dbt::get size()

Return the data array size.
e Dbt::set_ulen(u_int32_t value)

Set the byte size of the user-specified buffer.

Note that applications can determine the length of a record by setting the ulen field to
0 and checking the return value in the size field. See the DB_DBT_USERMEM flag for more
information.

e Dbt::get ulen()
Return the length in bytes of the user-specified buffer.

Note that applications can determine the length of a record by setting the ulen field to
0 and checking the return value in the size field. See the DB_DBT_USERMEM flag for more
information.

e Dbt::set_dlen(u_int32 t dlen)

2/17/2015

DB C++ API Page 198

Library Version 12.1.6.1 The Dbt Handle

Set the length of the partial record being read or written by the application, in bytes. See
the DB_DBT_PARTIAL flag for more information.

Dbt::get_dlen()
Return the length of the partial record, in bytes.
Dbt::set_doff(u_int32_t value)

Sets the offset of the partial record being read or written by the application, in bytes. See
the DB_DBT_PARTIAL flag for more information.

Dbt::get_doff()

Return the offset of the partial record, in bytes.
Dbt::set_flags(u_int32_t flags)

Set the object flag value.

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more
of the following values:

- DB_DBT_BLOB

Set this flag on a Dbt used for the data portion of a record to indicate that the Dbt stores
BLOB data. If this flag is set, and if the database otherwise supports BLOBs, then the data
contained by this Dbt will be stored as a BLOB, regardless of whether it exceeds the BLOB
threshold in size.

« DB_DBT_MALLOC

When this flag is set, Berkeley DB will allocate memory for the returned key or data item
(using malloc(3), or the user-specified malloc function), and return a pointer to it in the
data field of the key or data DBT structure. Because any allocated memory becomes the

responsibility of the calling application, the caller must determine whether memory was
allocated using the returned value of the data field.

It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLOC, and
DB_DBT_USERMEM.

« DB_DBT_REALLOC

When this flag is set Berkeley DB will allocate memory for the returned key or data item
(using realloc(3), or the user-specified realloc function), and return a pointer to it in the
data field of the key or data DBT structure. Because any allocated memory becomes the
responsibility of the calling application, the caller must determine whether memory was
allocated using the returned value of the data field.

It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLOC, and
DB_DBT_USERMEM.

2/17/2015

DB C++ API Page 199

Library Version 12.1.6.1

The Dbt Handle

+ DB_DBT_USERMEM

The data field of the key or data structure must refer to memory that is at least

ulen bytes in length. If the length of the requested item is less than or equal to that
number of bytes, the item is copied into the memory to which the data field refers.
Otherwise, the size field is set to the length needed for the requested item, and the error
DB_BUFFER_SMALL is returned.

It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLOC, and
DB_DBT_USERMEM.

If DB_DBT_MALLOC or DB_DBT_REALLOC is specified, Berkeley DB allocates a properly sized

byte array to contain the data. This can be convenient if you know little about the nature
of the data, specifically the size of data in the database. However, if your application
makes repeated calls to retrieve keys or data, you may notice increased garbage collection
due to this allocation. If you know the maximum size of data you are retrieving, you

might decrease the memory burden and speed your application by allocating your own
byte array and using DB_DBT_USERMEM. Even if you don't know the maximum size, you

can use this option and reallocate your array whenever your retrieval API call returns an
DB_BUFFER_SMALL error or throws an exception encapsulating an DB_BUFFER_SMALL.

« DB_DBT_PARTIAL

Do partial retrieval or storage of an item. If the calling application is doing a get, the
dlen bytes starting doff bytes from the beginning of the retrieved data record are
returned as if they comprised the entire record. If any or all of the specified bytes do not
exist in the record, the get is successful, and any existing bytes are returned.

For example, if the data portion of a retrieved record was 100 bytes, and a partial
retrieval was done using a DBT having a dlen field of 20 and a doff field of 85, the get call
would succeed, the data field would refer to the last 15 bytes of the record, and the size
field would be set to 15.

If the calling application is doing a put, the dlen bytes starting doff bytes from the
beginning of the specified key's data record are replaced by the data specified by the
data and size structure elements. If dlen is smaller than size the record will grow; if dlen
is larger than size the record will shrink. If the specified bytes do not exist, the record
will be extended using nul bytes as necessary, and the put call will succeed.

It is an error to attempt a partial put using the Db::put() (page 76) method in a database
that supports duplicate records. Partial puts in databases supporting duplicate records
must be done using a Dbc::put() (page 192) method.

It is an error to attempt a partial put with differing dlen and size values in Queue or
Recno databases with fixed-length records.

For example, if the data portion of a retrieved record was 100 bytes, and a partial put
was done using a DBT having a dlen field of 20, a doff field of 85, and a size field of 30,

2/17/2015

DB C++ API Page 200

Library Version 12.1.6.1

The Dbt Handle

the resulting record would be 115 bytes in length, where the last 30 bytes would be those
specified by the put call.

This flag is ignored when used with the pkey parameter on DB->pget() or DBcursor-
>pget().

DB_DBT_APPMALLOC

After an application-supplied callback routine passed to either Db::associate() (page

6) or Db::set_append_recno() (page 87) is executed, the data field of a DBT may refer

to memory allocated with malloc(3) or realloc(3). In that case, the callback sets the
DB_DBT_APPMALLOC flag in the DBT so that Berkeley DB will call free(3) to deallocate the
memory when it is no longer required.

DB_DBT_MULTIPLE

Set in a secondary key creation callback routine passed to Db::associate() (page 6) to
indicate that multiple secondary keys should be associated with the given primary key/
data pair. If set, the size field indicates the number of secondary keys and the data field
refers to an array of that number of DBT structures.

The DB_DBT_APPMALLOC flag may be set on any of the DBT structures to indicate that
their data field needs to be freed.

DB_DBT_READONLY

When this flag is set Berkeley DB will not write into the DBT. This may be set on key
values in cases where the key is a static string that cannot be written and Berkeley DB
might try to update it because the application has set a user defined comparison function.

2/17/2015

DB C++ API Page 201

Library Version 12.1.6.1 The Dbt Handle

DBT and Bulk Operations

DBT and Bulk Operations Description

Db::sort_multiple() Sort a set of DBTs

DbMultiplelterator Base class for bulk get retrieval

DbMultipleDatalterator Bulk retrieval iterator for data items

DbMultipleKeyDatalterator Bulk retrieval iterator for key/data pairs

DbMultipleRecnoDatalterator Bulk retrieval iterator for record number /
data item pairs

DbMultipleBuilder Base class for bulk buffer building

DbMultipleDataBuilder Bulk buffer builder for data items

DbMultipleKeyDataBuilder Bulk buffer builder for key/data pairs

DbMultipleRecnoDataBuilder Bulk buffer builder for record number / data
pairs

2/17/2015 DB C++ API Page 202

Library Version 12.1.6.1 The Dbt Handle

DbMultipleIterator

#include <db_cxx.h>

class DbMultipleIterator
1}

The DbMultipleIterator class is a shared package-private base class for the three types of
bulk-return Iterator; it should never be instantiated directly, but it handles the functionality
shared by its subclasses.

Class
DbMultiplelterator
See Also

DBT and Bulk Operations (page 202)

2/17/2015 DB C++ API Page 203

Library Version 12.1.6.1 The Dbt Handle

DbMultipleDatalterator

#include <db_cxx.h>

class DbMultipleDataIterator

{

public:
DbMultipleDataIterator(const Dbt &dbt);
bool next(Dbt &data);

};

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the Db::get() (page
31) or Dbc::get() (page 183) methods, the data Dbt returned by those interfaces will refer to a
buffer that is filled with data. Access to that data is through the classes.

The DbMultipleDataIterator class is used to iterate through data returned using the
DB_MULTIPLE flag from a database belonging to any access method.

The constructor takes the The Dbt Handle (page 197) returned by the call to Db::get() (page
31) or Dbc::get() (page 183) that used the DB_MULTIPLE flag.

Note

All instances of the bulk retrieval classes may be used only once, and to traverse the
bulk retrieval buffer in the forward direction only. However, they are nondestructive,
so multiple iterators can be instantiated and used on the same returned data Dbt.

Parameters are:
e dbt

The dbt parameter is a data The Dbt Handle (page 197) returned by the call to
Db::get() (page 31) or Dbc::get() (page 183) that used the DB_MULTIPLE flag.

DbMultipleDatalterator.next()

The DbMultipleDataIterator.next() method returns the next data item in the original bulk
retrieval buffer.

The DbMultipleDataIterator.next() method method returns false if no more data are
available, and true otherwise.

Parameters are:
» data
The data parameter is a The Dbt Handle (page 197) that will be filled in with a reference

to a buffer, a size, and an offset that together yield the next data item in the original bulk
retrieval buffer.

2/17/2015

DB C++ API Page 204

Library Version 12.1.6.1 The Dbt Handle

Class
DbMultiplelterator
See Also

DBT and Bulk Operations (page 202)

2/17/2015 DB C++ API Page 205

Library Version 12.1.6.1

DbMultipleKeyDatalterator

#include <db_cxx.h>

class DbMultipleKeyDataIterator

{

public:
DbMultipleKeyDataIterator(const Dbt &dbt);
bool next (Dbt &key, Dbt &data);

};

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the Db::get() (page
31) or Dbc::get() (page 183) methods, the data Dbt returned by those interfaces will refer to a

buffer that is filled with data. Access to that data is through these classes.

The DbMultipleDataIterator class is used to iterate through data returned using the
DB_MULTIPLE_KEY flag from a database belonging to Btree or Hash access methods.

The constructor takes the The Dbt Handle (page 197) returned by the call to Db::get() (page

31) or Dbc::get() (page 183) that used the DB_MULTIPLE_KEY flag.

Note

All instances of the bulk retrieval classes may be used only once, and to traverse the

bulk retrieval buffer in the forward direction only. However, they are nondestructive,

so multiple iterators can be instantiated and used on the same returned data Dbt.
Parameters are:

» dbt

The dbt parameter is a data The Dbt Handle (page 197) returned by the call to
Db::get() (page 31) or Dbc::get() (page 183) that used the DB_MULTIPLE_KEY flag.

DbMultipleKeyDatalterator.next()

The DbMultipleKeyDataIterator.next() method returns the next data item in the original

bulk retrieval buffer.

The DbMultipleKeyDataIterator.next() method method returns false if no more data are

available, and true otherwise.
Parameters are:

o key

The key parameter is a The Dbt Handle (page 197) that will be filled in with a reference
to a buffer, a size, and an offset that together yield the next data item in the original bulk

retrieval buffer.

2/17/2015

DB C++ API Page 206

The Dbt Handle

Library Version 12.1.6.1 The Dbt Handle

e data

The data parameter is a The Dbt Handle (page 197) that will be filled in with a reference
to a buffer, a size, and an offset that together yield the next data item in the original bulk
retrieval buffer.

Class
DbMultiplelterator

See Also

DBT and Bulk Operations (page 202)

2/17/2015 DB C++ API Page 207

Library Version 12.1.6.1

DbMultipleRecnoDatalterator

#include <db_cxx.h>

class DbMultipleRecnoDataIterator

{

public:
DbMultipleRecnoDatalIterator(const Dbt &dbt);
bool next(db_recno_t &key, Dbt &data);

¥

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the Db::get() (page
31) or Dbc::get() (page 183) methods, the data Dbt returned by those interfaces will refer to a

buffer that is filled with data. Access to that data is through these classes.

The DbMultipleDataIterator class is used to iterate through data returned using the
DB_MULTIPLE_KEY flag from a database belonging to Queue or Recno access methods.

The constructor takes the The Dbt Handle (page 197) returned by the call to Db::get() (page

31) or Dbc::get() (page 183) that used the DB_MULTIPLE_KEY flag.

Note

All instances of the bulk retrieval classes may be used only once, and to traverse the

bulk retrieval buffer in the forward direction only. However, they are nondestructive,

so multiple iterators can be instantiated and used on the same returned data Dbt.
Parameters are:

» dbt

The dbt parameter is a data The Dbt Handle (page 197) returned by the call to
Db::get() (page 31) or Dbc::get() (page 183) that used the DB_MULTIPLE_KEY flag.

DbMultipleRecnoDatalterator.next()

The DbMultipleRecnoDatalterator.next() method returns the next data item in the
original bulk retrieval buffer.

The DbMultipleRecnoDatalterator.next() method method returns false if no more data

are available, and true otherwise.
Parameters are:

o key

The key parameter is a The Dbt Handle (page 197) that will be filled in with a reference
to a buffer, a size, and an offset that together yield the next data item in the original bulk

retrieval buffer.

2/17/2015

DB C++ API Page 208

The Dbt Handle

Library Version 12.1.6.1 The Dbt Handle

e data

The data parameter is a The Dbt Handle (page 197) that will be filled in with a reference
to a buffer, a size, and an offset that together yield the next data item in the original bulk
retrieval buffer.

Class
DbMultiplelterator

See Also

DBT and Bulk Operations (page 202)

2/17/2015 DB C++ API Page 209

Library Version 12.1.6.1 The Dbt Handle

DbMultipleBuilder

#include <db_cxx.h>

class DbMultipleBuilder
1}

The DbMultipleBuilder class is a shared package-private base class for the three types of
bulk buffer builders; it should never be instantiated directly, but it handles the functionality
shared by its subclasses.

Class
Dbt
See Also

DBT and Bulk Operations (page 202)

2/17/2015 DB C++ API Page 210

Library Version 12.1.6.1 The Dbt Handle

DbMultipleDataBuilder

#include <db_cxx.h>

class DbMultipleDataBuilder

{
public:
DbMultipleDataBuilder(Dbt &dbt);
bool append(void *dbuf, size_t dlen);
bool reserve(void *&ddest, size_t dlen);
s

This class builds a bulk buffer for use when the DB_MULTIPLE flag is specified to either
the Db::put() (page 76) or Db::del() (page 23) methods. The buffer in the Dbt passed
to the constructor is filled by calls to DbMultipleDataBuilder.append() (page 211) or
DbMultipleDataBuilder.reserve() (page 212).

The constructor takes a The Dbt Handle (page 197) that must be configured to contain a
buffer managed by the application, with the ulen field set to the size of the buffer.

Note

All instances of the bulk retrieval classes may be used only once, and to build the bulk
buffer in the forward direction only.

Parameters are:
o dbt
The dbt parameter is a The Dbt Handle (page 197) that must already be configured to

contain a buffer managed by the application, with the ulen field set to the size of the
buffer, which must be a multiple of 4.

DbMultipleDataBuilder.append()
The DbMultipleDataBuilder.append() method copies a data item to the end of the buffer.

The DbMultipleDataBuilder.append() method returns false if the data does not fit in the
buffer and true otherwise.

Parameters are:
e dbuf

A pointer to the data to be copied into the bulk buffer.
e dlen

The number of bytes to be copied.

2/17/2015 DB C++ API Page 211

Library Version 12.1.6.1 The Dbt Handle

DbMultipleDataBuilder.reserve()

The DbMultipleDataBuilder.reserve() method reserves space for the next data item
in the bulk buffer. Unlike the append(), no data is actually copied into the bulk buffer by
reserve(): copying the data is the responsibility of the application.

The DbMultipleDataBuilder.reserve() method returns false if the data does not fit in the
buffer and true otherwise.

Parameters are:
e ddest

Set to a pointer to the position in the bulk buffer reserved for the data item, if enough
space is available.

» dlen
The number of bytes to reserve.
Class
Dbt
See Also

DBT and Bulk Operations (page 202)

2/17/2015 DB C++ API Page 212

Library Version 12.1.6.1 The Dbt Handle

DbMultipleKeyDataBuilder

#include <db_cxx.h>

class DbMultipleKeyDataBuilder

{
public:

DbMultipleKeyDataBuilder (Dbt &dbt);

bool append(void *kbuf, size_t klen, void *dbuf, size_t dlen);

bool reserve(void *&kdest, size_t klen, void *&ddest, size_t dlen);
¥

This class builds a bulk buffer for use when the DB_MULTIPLE_KEY flag is specified to
either the Db::put() (page 76) or Db::del() (page 23) methods with the btree or hash
access methods. The buffer in the Dbt passed to the constructor is filled by calls to

DbMultipleKeyDataBuilder.append() (page 213) or DbMultipleKeyDataBuilder.reserve() (page
214).

The constructor takes a The Dbt Handle (page 197) that must be configured to contain a
buffer managed by the application, with the ulen field set to the size of the buffer.

Note

All instances of the bulk retrieval classes may be used only once, and to build the bulk
buffer in the forward direction only.

Parameters are:

« dbt

The dbt parameter is a The Dbt Handle (page 197) that must already be configured to
contain a buffer managed by the application, with the ulen field set to the size of the
buffer, which must be a multiple of 4.

DbMultipleKeyDataBuilder.append()

The DbMultipleKeyDataBuilder.append() method copies a key/data pair to the end of the
buffer.

The DbMultipleKeyDataBuilder.append() method returns false if the key/data pair does
not fit in the buffer and true otherwise.

Parameters are:
o kbuf

A pointer to the key to be copied into the bulk buffer.

e klen

2/17/2015 DB C++ API Page 213

Library Version 12.1.6.1 The Dbt Handle

The number of bytes of the key to be copied.
e dbuf
A pointer to the data item to be copied into the bulk buffer.
e dlen
The number of bytes of the data item to be copied.
DbMultipleKeyDataBuilder.reserve()

The DbMultipleKeyDataBuilder.reserve() method reserves space for the next key/data
pair in the bulk buffer. Unlike the append(), no data is actually copied into the bulk buffer by
reserve(): copying the data is the responsibility of the application.

The DbMultipleKeyDataBuilder.reserve() method returns false if the data does not fit in
the buffer and true otherwise.

Parameters are:
e kdest

Set to a pointer to the position in the bulk buffer reserved for the key, if enough space is
available.

e klen
The number of bytes to reserve for the key.
¢ ddest

Set to a pointer to the position in the bulk buffer reserved for the data item, if enough
space is available.

e dlen
The number of bytes to reserve for the data item.
Class
DbMultipleBuilder
See Also

DBT and Bulk Operations (page 202)

2/17/2015 DB C++ API Page 214

Library Version 12.1.6.1 The Dbt Handle

DbMultipleRecnhoDataBuilder

#include <db_cxx.h>

class DbMultipleRecnoDataBuilder

{
public:
DbMultipleRecnoDataBuilder(Dbt &dbt);
bool append(db_recno_t recno, void *dbuf, size_t dlen);
bool reserve(db_recno_t recno, void *&ddest, size_t dlen);
¥

This class builds a bulk buffer for use when the DB_MULTIPLE_KEY flag is specified to either
the Db::put() (page 76) or Db::del() (page 23) methods with the recno or queue access
methods, or for the key when the DB_MULTIPLE flag is used. The buffer in the Dbt passed

to the constructor is filled by calls to DbMultipleRecnoDataBuilder.append() (page 215) or
DbMultipleRecnoDataBuilder.reserve() (page 216).

The constructor takes a The Dbt Handle (page 197) that must be configured to contain a
buffer managed by the application, with the ulen field set to the size of the buffer.

Note

All instances of the bulk retrieval classes may be used only once, and to build the bulk
buffer in the forward direction only.

Parameters are:

e dbt

The dbt parameter is a The Dbt Handle (page 197) that must already be configured to
contain a buffer managed by the application, with the ulen field set to the size of the
buffer, which must be a multiple of 4.

bool append(db_recno_t recno, void *dbuf, size_t dlen);

DbMultipleRecnoDataBuilder.append()

The DbMultipleRecnoDataBuilder.append() method copies a record number / data pair to
the end of the buffer.

The DbMultipleRecnoDataBuilder.append() method returns false if the record number /
data pair does not fit in the buffer and true otherwise.

Parameters are:
e recno

The record number to append.

2/17/2015

DB C++ API Page 215

Library Version 12.1.6.1 The Dbt Handle

e dbuf
A pointer to the data item to be copied into the bulk buffer.
e dlen
The number of bytes of the data item to be copied.
DbMultipleRecnoDataBuilder.reserve()

The DbMultipleRecnoDataBuilder.reserve() method reserves space for the next record
number / data pair in the bulk buffer. The record number is appended, but unlike the
append(), the data is not copied into the bulk buffer by reserve(): copying the data is the
responsibility of the application.

The DbMultipleRecnoDataBuilder.reserve() method returns false if the record does not
fit in the buffer and true otherwise.

Parameters are:
e recno
The record number to append.

e ddest

Set to a pointer to the position in the bulk buffer reserved for the data item, if enough
space is available.

e dlen
The number of bytes to reserve for the data item.
Class
DbMultipleBuilder
See Also

DBT and Bulk Operations (page 202)

2/17/2015 DB C++ API Page 216

Chapter 5. The DbEnv Handle

The DbEnv object is the handle for a Berkeley DB environment — a collection including support
for some or all of caching, locking, logging and transaction subsystems, as well as databases
and log files. Methods of the DbEnv handle are used to configure the environment as well as to
operate on subsystems and databases in the environment.

DbEnv handles are opened using the DbEnv::open() (page 271) method.
When you are done using your environment, close it using the DbEnv::close() (page 225)

method. Before closing your environment, make sure all open database handles are closed
first. See the Db::close() (page 13) method for more information.

2/17/2015

DB C++ API Page 217

Library Version 12.1.6.1

The DbEnv Handle

Database Environments and Related Methods

Database Environment Operations

Description

DbEnv::backup() Hot back up an entire environment
DbEnv::close() Close an environment

DbEnv Create an environment handle
DbEnv::dbbackup() Hot back up a single environment file
DbEnv::dbremove() Remove a database

DbEnv::dbrename() Rename a database

DbEnv::err() Error message

DbEnv::failchk() Check for thread failure
DbEnv::fileid_reset() Reset database file IDs
DbEnv::full_version() Return full version information
Db::get_env() Return the Db's underlying DbEnv handle
DbEnv::get_home() Return environment's home directory
DbEnv::get_open_flags() Return flags with which the environment was

opened

DbEnv::

log_verify()

Verify log files of an environment.

DbEnv::lsn_reset() Reset database file LSNs
DbEnv::open() Open an environment
DbEnv::remove() Remove an environment
DbEnv::stat_print() Environment statistics
DbEnv::strerror() Error strings
DbEnv::version() Return version information

Environment Configuration

DbEnv::add_data_dir() Add an environment data directory
DbEnv::set_alloc() Set local space allocation functions
DbEnv::set_app_dispatch() Configure application recovery callback

DbEnv:
DbEnv::

:set_backup_callbacks(),

get_backup_callbacks()

Set/get callbacks used for environment hot
backups

DbEnv::
DbEnv::

set_backup_config(),
get_backup_config()

Set/get environment hot backup configuration
options

DbEnv::

set_data_dir(), DbEnv::get_data_dirs()

Set/get the environment data directory

DbEnv:
DbEnv::

:set_create_dir(),

get_create_dir()

Add an environment data directory

DbEnv::
DbEnv::

set_encrypt(),
get_encrypt_flags()

Set/get the environment cryptographic key

2/17/2015

DB C++ API

Page 218

Library Version 12.1.6.1

The DbEnv Handle

Database Environment Operations

Description

DbEnv::

set_event_notify()

Set event notification callback

DbEnv:

:set_errcall()

Set error message callbacks

DbEnv:

:set_errfile(), DbEnv::get_errfile()

Set/get error message FILE

DbEnv::

set_error_stream()

Set C++ ostream used for error messages

DbEnv::

set_errpfx(), DbEnv::get_errpfx()

Set/get error message prefix

DbEnv::

set_feedback()

Set feedback callback

DbEnv::

set_flags(), DbEnv::get_flags()

Environment configuration

DbEnv::

set_intermediate_dir_mode(),

Set/get intermediate directory creation mode

DbEnv::get_intermediate_dir_mode()

DbEnv::set_isalive() Set thread is-alive callback
DbEnv::set_memory_init(), Set/get initial memory allocation
DbEnv::get_memory_init()

DbEnv::set_memory_max(), Set/get maximum memory allocation
DbEnv::get_memory_max()

DbEnv::set_metadata_dir(), Set/get the directory containing environment
DbEnv::get_metadata_dir() metadata

DbEnv::

set_message_stream()

Set C++ ostream used for informational
messages

DbEnv::

set_msgcall()

Set informational message callback

DbEnv::

set_msgfile(), DbEnv::get_msgfile()

Set/get informational message FILE

DbEnv::

set_shm_key(), DbEnv::get_shm_key()

Set/get system memory shared segment ID

DbEnv::
DbEnv::

set_thread_count(),
get_thread_count()

Set/get approximate thread count

DbEnv::

set_thread_id()

Set thread of control ID function

DbEnv::

set_thread_id_string()

Set thread of control ID format function

DbEnv::

set_timeout(), DbEnv::get_timeout()

Set/get lock and transaction timeout

DbEnv::

set_tmp_dir(), DbEnv::get_tmp_dir()

Set/get the environment temporary file
directory

DbEnv:

:set_verbose(), DbEnv::get_verbose()

Set/get verbose messages

DbEnv:
DbEnv::

:set_cachesize(),

get_cachesize()

Set/get the environment cache size

2/17/2015

DB C++ API

Page 219

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::add_data_dir()

#include <db_cxx.h>

int
DbEnv::add_data_dir(const char *dir);

Add the path of a directory to be used as the location of the access method database files.
Paths specified to the Db::open() (page 71) function will be searched relative to this path.
Paths set using this method are additive, and specifying more than one will result in each
specified directory being searched for database files.

If no database directories are specified, database files must be named either by absolute
paths or relative to the environment home directory. See Berkeley DB File Naming for more
information.

The database environment's data directories may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"add_data_dir", one or more whitespace characters, and the directory name. Note that if you
use this method for your application, and you also want to use the db_recover (page 724)

or db_archive (page 701) utilities, then you should create a DB_CONFIG file and set the
"add_data_dir" parameter in it.

The DbEnv: :add_data_dir() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv: :add_data_dir() method may not be called after the DbEnv::open() (page 271)
method is called. If the database environment already exists when DbEnv::open() (page 271)
is called, the information specified to DbEnv: :add_data_dir() must be consistent with the
existing environment or corruption can occur.

The DbEnv: :add_data_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
dir

The dir parameter is a directory to be used as a location for database files. This directory
must currently exist at environment open time.

When using a Unicode build on Windows (the default), this argument will be interpreted as a
UTF-8 string, which is equivalent to ASCII for Latin characters.

Errors

The DbEnv: :add_data_dir() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

2/17/2015 DB C++ API Page 220

../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DbEnv Handle

EINVAL

If the method was called after DbEnv::open() (page 271) was called; or if an invalid flag
value or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 221

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::backup()

#include <db_cxx.h>

int
DbEnv: :backup(const char *target, u_int32_t flags);

The DbEnv: :backup() method performs a hot backup of the open environment. All files
used by the environment are backed up, so long as the normal rules for file placement are
followed. For information on how files are normally placed relative to the environment
directory, see Berkeley DB File Naming in the Berkeley DB Programmer's Reference Guide.

By default, data directories and the log directory specified relative to the home directory will
be recreated relative to the target directory. If absolute path names are used, then specify
DB_BACKUP_SINGLE_DIR to the flags parameter.

This method provides the same functionality as the db_hotbackup (page 711) utility.
However, this method does not perform the housekeeping actions performed by the
db_hotbackup utility. In particular, you may want to run a checkpoint before calling this
method. To run a checkpoint, use the DbEnv::txn_checkpoint() (page 657) method. For more
information on checkpoints, see Checkpoints in the Berkeley DB Programmer’s Reference
Guide.

To back up a single database file contained within the environment, use the
DbEnv::dbbackup() (page 229) method.

This method's default behavior can be changed by setting backup callbacks. See
DbEnv::set_backup_callbacks() (page 283) for more information. Additional tuning
parameters can also be set using the DbEnv::set_backup_config() (page 286) method.

The DbEnv: :backup() method may only be called after the environment handle has been
opened.

The DbEnv: :backup() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

target

Identifies the directory in which the back up will be placed. Any subdirectories required to
contain the backup must be placed relative to this directory. Note that if the backup callbacks
are set, then the value specified to this parameter is passed on to the open_func() callback.
If this parameter is NULL, then the target must be specified to the open_func() callback.

This directory, and any required subdirectories, will be created for you if you specify the
DB_CREATE flag on the call to this method. Otherwise, if the target does not exist, this
method exits with an ENOENT error return.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the values:

2/17/2015

DB C++ API Page 222

../../programmer_reference/env_naming.html
../../programmer_reference/transapp_checkpoint.html

Library Version 12.1.6.1 The DbEnv Handle

DB_BACKUP_CLEAN
Before performing the backup, first remove all files from the target backup directory tree.
e DB_BACKUP_FILES

Back up all ordinary files that might exist in the environment, and the environment's
subdirectories.

 DB_BACKUP_NO_LOGS
Back up only the *.db files. Do not backup the log files.
« DB_BACKUP_SINGLE_DIR

Regardless of the directory structure used by the source environment, place all back up files
in the single directory identified by the target parameter. Use this option if absolute path
names to your environment directory and the files within that directory are required by
your application.

e DB_BACKUP_UPDATE

Perform an incremental back up, instead of a full back up. When this option is specified,
only log files are copied to the target directory.

e DB_CREATE
If the target directory does not exist, create it and any required subdirectories.
« DB_EXCL
Return an EEXIST error if a target backup file already exists.
« DB_VERB_BACKUP
Run in verbose mode, listing operations as they are completed.
Errors

The DbEnv: :backup () method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EEXIST

DB_EXCL was specified for the flags parameter, and an existing target file was discovered
when attempting to back up a source file.

ENOENT
The target directory does not exist and DB_CREATE was not specified for the flags parameter.
EINVAL

An invalid flag value or parameter was specified.

2/17/2015

DB C++ API Page 223

Library Version 12.1.6.1 The DbEnv Handle

Class

DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 224

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::close()

#include <db_cxx.h>
DbEnv::close(u_int32_t flags);

The DbEnv: :close() method closes the Berkeley DB environment, freeing any allocated
resources and closing all database handles opened with this environment handle, as well as
closing any underlying subsystems.

When you call the DbEnv: :close() method, all open Db handles and Dbc handles are closed
automatically by this function. And, when you close a database handle, all cursors opened
with it are closed automatically.

In multiple threads of control, each thread of control opens a database environment

and the database handles within it. When you close each database handle using the

DbEnv: :close() method, by default, the database is not synchronized and is similar

to calling the Db: : close(DB_NOSYNC) method. This is to avoid unncessary database
synchronization when there are multiple environment handles open. To ensure all open
database handles are synchronized when you close the last environment handle, set the flag
parameter value of the DbEnv: :close() method to DB_FORCESYNC. This is similar to calling
the Db: :close(®) method to close each database handle.

If a database close operation fails, the method returns a non-zero error value for the first
instance of such an error, and continues to close the rest of the database and environment
handles.

The DbEnv handle should not be closed while any other handle that refers to it is not yet
closed; for example, database environment handles must not be closed while transactions
in the environment have not yet been committed or aborted. Specifically, this includes the
DbTxn, DbLogc and DbMpoolFile handles.

Where the environment was initialized with the DB_INIT_LOCK flag, calling DbEnv: :close()
does not release any locks still held by the closing process, providing functionality for long-
lived locks. Processes that want to have all their locks released can do so by issuing the
appropriate DbEnv::lock_vec() (page 396) call.

Where the environment was initialized with the DB_INIT_MPOOL flag, calling DbEnv: :close()
implies calls to DbMpoolFile::close() (page 476) for any remaining open files in the memory
pool that were returned to this process by calls to DbMpoolFile::open() (page 480). It does
not imply a call to DbMpoolFile::sync() (page 484) for those files.

Where the environment was initialized with the DB_INIT_TXN flag, calling DbEnv: :close()
aborts any unresolved transactions. Applications should not depend on this behavior for
transactions involving Berkeley DB databases; all such transactions should be explicitly
resolved. The problem with depending on this semantic is that aborting an unresolved
transaction involving database operations requires a database handle. Because the database
handles should have been closed before calling DbEnv: : close(), it will not be possible to
abort the transaction, and recovery will have to be run on the Berkeley DB environment
before further operations are done.

2/17/2015

DB C++ API Page 225

Library Version 12.1.6.1 The DbEnv Handle

Where log cursors were created using the DbEnv::log_cursor() (page 409) method, calling
DbEnv::close() does not imply closing those cursors.

In multithreaded applications, only a single thread may call the DbEnv: :close() method.

After DbEnv: :close() has been called, regardless of its return, the Berkeley DB environment
handle may not be accessed again.

The DbEnv: :close() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
flags
The flags parameter must be set to 0 or be set to one of the following values:
e DB_FORCESYNC

When closing each database handle internally, synchronize the database. If this flag is not
specified, the database handle is closed without synchronizing the database.

e DB_FORCESYNCENV

When closing the enviroment, flush memory mapped environment regions to disk. Specifying
this flag may help prevent loss of updates when __db.00* files are on NFS storage.
However, there is a risk that this flag will significantly slow down this method call.

Class

DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 226

Library Version 12.1.6.1 The DbEnv Handle

DbEnv

#include <db_cxx.h>

class DbEnv {

public:
DbEnv(u_int32 flags);
~DbEnv();

DB_ENV *DbEnv::get_DB_ENV();

const DB_ENV *DbEnv::get_const_DB_ENV() const;

static DbEnv *DbEnv::get_DbEnv(DB_ENV *dbenv);

static const DbEnv *DbEnv::get_const_DbEnv(const DB_ENV *dbenv);

};

The DbEnv object is the handle for a Berkeley DB environment — a collection including support
for some or all of caching, locking, logging and transaction subsystems, as well as databases
and log files. Methods of the DbEnv handle are used to configure the environment as well as to
operate on subsystems and databases in the environment.

DbEnv handles are free-threaded if the DB_THREAD flag is specified to the

DbEnv::open() (page 271) method when the environment is opened. The DbEnv handle
should not be closed while any other handle remains open that is using it as a reference (for
example, Db or DbTxn). Once either the DbEnv::close() (page 225) or DbEnv::remove() (page
277) methods are called, the handle may not be accessed again, regardless of the method's
return.

The constructor creates the DbEnv object. The constructor allocates memory internally;
calling the DbEnv::close() (page 225) or DbEnv::remove() (page 277) methods will free that
memory.

Before the handle may be used, you must open it using the DbEnv::open() (page 271)
method.

The flags parameter must be set to 0.
« DB_CXX_NO_EXCEPTIONS

The Berkeley DB C++ API supports two different error behaviors. By default, whenever an
error occurs, an exception is thrown that encapsulates the error information. This generally
allows for cleaner logic for transaction processing because a try block can surround a single
transaction. However, if DB_CXX_NO_EXCEPTIONS is specified, exceptions are not thrown;
instead, each individual function returns an error code.

Each DbEnv object has an associated DB_ENV structure, which is used by the underlying
implementation of Berkeley DB and its C-language API. The DbEnv::get DB_ENV() method
returns a pointer to this struct. Given a const DbEnv object, DbEnv: :get_const_DB_ENV()
returns a const pointer to the same struct.

2/17/2015

DB C++ API Page 227

Library Version 12.1.6.1 The DbEnv Handle

Given a DB_ENV struct, the DbEnv: :get_DbEnv() method returns the corresponding DbEnv
object, if there is one. If the DB_ENV struct was not associated with a DbEnv (that is, it was
not returned from a call to DbEnv: :get_DB_ENV()), then the result of DbEnv: :get_DbEnv()
is undefined. Given a const DB_ENV struct, DbEnv: :get_const_Db_Env() returns the
associated const DbEnv object, if there is one.

These methods may be useful for Berkeley DB applications including both C and C++ language
software. It should not be necessary to use these calls in a purely C++ application.

Class
DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 228

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::dbbackup()

#include <db_cxx.h>

int
DbEnv: :dbbackup(const char *dbfile, const char *target,
u_int32_t flags);

The DbEnv: :dbbackup () method performs a hot backup of a single database file contained
within the environment.

To back up an entire environment, use the DbEnv::backup() (page 222) method.
This method's default behavior can be changed by setting backup callbacks. See
DbEnv::set_backup_callbacks() (page 283) for more information. Additional tuning

parameters can also be set using the DbEnv::set_backup_config() (page 286) method.

The DbEnv: :dbbackup() method may only be called after the environment handle has been
opened.

The DbEnv: :dbbackup () method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
dbfile
Identifies the database file that you want to back up.
target

Identifies the directory in which the back up will be placed. This target must exist; otherwise
this method exits with an ENOENT error return.

Note that if the backup callbacks are set, then the value specified to this parameter is passed
on to the open_func() callback. If this parameter is NULL, then the target must be specified
directly to the open_func() callback.

flags
The flags parameter must be set to 0 or the following value:
e DB_EXCL

Return an EEXIST error if a target backup file already exists.

Errors

The DbEnv: : dbbackup () method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

2/17/2015 DB C++ API Page 229

Library Version 12.1.6.1 The DbEnv Handle

EEXIST

DB_EXCL was specified for the flags parameter, and an existing target file was discovered
when attempting to back up a source file.

ENOENT

The target directory does not exist.

EINVAL

An invalid flag value or parameter was specified.

Class
DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 230

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::dbremove()

#include <db_cxx.h>

int
DbEnv: :dbremove(DbTxn *txnid,
const char *file, const char *database, u_int32_t flags);

The DbEnv: :dbremove () method removes the database specified by the file and database
parameters. If no database is specified, the underlying file represented by file is removed,
incidentally removing all of the databases it contained.

Applications should never remove databases with open Db handles, or in the case of removing
a file, when any database in the file has an open handle.

The DbEnv: :dbremove () method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

DbEnv: :dbremove() is affected by any database directory specified using the
DbEnv::add_data_dir() (page 220) method, or by setting the add_data_dir string in the
environment's DB_CONFIG file.

Parameters
txnid
If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 653); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 645); otherwise NULL. If no transaction handle is specified,
but the DB_AUTO_COMMIT flag is specified to either this method or the environment handle,
the operation will be implicitly transaction protected.
file
The file parameter is the physical file which contains the database(s) to be removed.
database
The database parameter is the database to be removed.
flags
The flags parameter must be set to 0 or the following value:
e DB_AUTO_COMMIT

Enclose the DbEnv: :dbremove() call within a transaction. If the call succeeds, changes

made by the operation will be recoverable. If the call fails, the operation will have made no
changes.

2/17/2015 DB C++ API Page 231

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DbEnv Handle

Environment Variables

The environment variable DB_HOME may be used as the path of the database environment
home.

Errors

The DbEnv: : dbremove () method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See Db::set_Llk_exclusive() (page
126) for more information.

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If the method was called before DbEnv::open() (page 271) was called; or if an invalid flag
value or parameter was specified.

ENOENT
The file or directory does not exist.
DB_META_CHKSUM_FAIL

Checksum mismatch detected on a database metadata page. Either the database is corrupted
or the file is not a Berkeley DB database file.

Class

DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 232

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::dbrename()

#include <db_cxx.h>

int
DbEnv: :dbrename(DbTxn *txnid, const char *file,
const char *database, const char *newname, u_int32_t flags);

The DbEnv: : dbrename () method renames the database specified by the file and database
parameters to newname. If no database is specified, the underlying file represented by file is
renamed using the value supplied to newname, incidentally renaming all of the databases it
contained.

Applications should not rename databases that are currently in use. If an underlying file is
being renamed and logging is currently enabled in the database environment, no database in
the file may be open when the DbEnv: :dbrename() method is called.

The DbEnv: :dbrename() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

DbEnv: :dbrename() is affected by any database directory specified using the
DbEnv::add_data_dir() (page 220) method, or by setting the add_data_dir string in the
environment's DB_CONFIG file.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DbEnv::txn_begin() (page 653); if the operation is part of
a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DbEnv::cdsgroup_begin() (page 645); otherwise NULL. If no transaction handle is specified,
but the DB_AUTO_COMMIT flag is specified to either this method or the environment handle,
the operation will be implicitly transaction protected.

file
The file parameter is the physical file which contains the database(s) to be renamed.

When using a Unicode build on Windows (the default), the file argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

database

The database parameter is the database to be renamed.
newname

The newname parameter is the new name of the database or file.
flags

The flags parameter must be set to 0 or the following value:

2/17/2015

DB C++ API Page 233

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DbEnv Handle

 DB_AUTO_COMMIT

Enclose the DbEnv: :dbrename() call within a transaction. If the call succeeds, changes
made by the operation will be recoverable. If the call fails, the operation will have made no
changes.

Environment Variables

The environment variable DB_HOME may be used as the path of the database environment
home.

Errors

The DbEnv: :dbrename () method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

DbDeadlockException or DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.

DbDeadlockException (page 349) is thrown if your Berkeley DB API is configured to throw
exceptions. Otherwise, DB_LOCK_DEADLOCK is returned.

DbLockNotGrantedException or DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See Db::set_Lk_exclusive() (page
126) for more information.

DbLockNotGrantedException (page 350) is thrown if your Berkeley DB API is configured to
throw exceptions. Otherwise, DB_LOCK_NOTGRANTED is returned.

EINVAL

If the method was called before DbEnv::open() (page 271) was called; or if an invalid flag
value or parameter was specified.

ENOENT
The file or directory does not exist.
DB_META_CHKSUM_FAIL

Checksum mismatch detected on a database metadata page. Either the database is corrupted
or the file is not a Berkeley DB database file.

Class

DbEnv

2/17/2015 DB C++ API Page 234

Library Version 12.1.6.1 The DbEnv Handle

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 235

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::err()

#include <db_cxx.h>
DbEnv::err(int error, const char *fmt, ...);
DbEnv::errx(const char *fmt, ...);

The DbEnv: :err(), DbEnv: :errx, (), Db::err() (page 26) and Db: :errx() methods provide
error-messaging functionality for applications written using the Berkeley DB library.

The Db::err() (page 26) and DbEnv::err() (page 236) methods constructs an error message
consisting of the following elements:

« An optional prefix string
If no error callback function has been set using the DbEnv::set_errcall() (page 300)
method, any prefix string specified using the DbEnv::set_errpfx() (page 305) method,
followed by two separating characters: a colon and a <space> character.

« An optional printf-style message

The supplied message fmt, if non-NULL, in which the ANSI C X3.159-1989 (ANSI C) printf
function specifies how subsequent parameters are converted for output.

« A separator
Two separating characters: a colon and a <space> character.
« A standard error string

The standard system or Berkeley DB library error string associated with the error value, as
returned by the DbEnv::strerror() (page 345) method.

This constructed error message is then handled as follows:

« If an error callback function has been set (see Db::set_errcall() (page 104) and
DbEnv::set_errcall() (page 300)), that function is called with two parameters: any prefix
string specified (see Db::set_errpfx() (page 109) and DbEnv::set_errpfx() (page 305)) and
the error message.

« If a C library FILE * has been set (see Db::set_errfile() (page 106) and
DbEnv::set_errfile() (page 302)), the error message is written to that output stream.

« If a C++ ostream has been set (see DbEnv::set_error_stream() (page 304) and
Db::set_error_stream() (page 108)), the error message is written to that stream.

« If none of these output options have been configured, the error message is written to stderr,
the standard error output stream.

2/17/2015

DB C++ API Page 236

Library Version 12.1.6.1 The DbEnv Handle

Parameters

error

The error parameter is the error value for which the DbEnv: :err() and Db::err() (page 26)
methods will display a explanatory string.

fmt

The fmt parameter is an optional printf-style message to display.
Class

DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 237

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::failchk()

#include <db_cxx.h>

int
DbEnv::failchk(u_int32_t flags);

The DbEnv: : failchk() method checks for threads of control (either a true thread or a
process) that have exited while manipulating Berkeley DB library data structures, while
holding a logical database lock, or with an unresolved transaction (that is, a transaction that
was never aborted or committed). For more information, see Architecting Data Store and
Concurrent Data Store applications, and Architecting Transactional Data Store applications,
both in the Berkeley DB Programmer’s Reference Guide.

The DbEnv: : failchk() method is used in conjunction with the
DbEnv::set_thread_count() (page 330), DbEnv::set_isalive() (page 317) and
DbEnv::set_thread_id() (page 332) methods. Before calling the failchk()method,
applications must:

1. Configure their database using the DbEnv::set_thread_count() (page 330) method.

2. Establish an is_alive() function and invoke DbEnv::set_isalive() (page 317) with that
function as the is_alive parameter.

3. Establish a thread_id function and invoke DbEnv::set_thread_id() (page 332) with that
function as the thread_id parameter.

If any of these methods are omitted, a program may be unable to allocate a thread control
block. This is true of the standalone Berkeley DB utility programs. To avoid problems when
using the standalone Berkeley DB utility programs with environments configured for failure
checking, incorporate the utility's functionality directly in the application, or call the
DbEnv::failchk() method along with its associated methods before running the utility.

If DbEnv: :failchk() determines a thread of control exited while holding database read
locks, it will release those locks. If DbEnv: :failchk() determines a thread of control exited
with an unresolved transaction, the transaction will be aborted. In either of these cases,
DbEnv: :failchk() will return 0 and the application may continue to use the database
environment.

In either of these cases, the DbEnv: :failchk() method will also report the process and
thread IDs associated with any released locks or aborted transactions. The information
is printed to a specified output channel (see the DbEnv::set_msgfile() (page 327)
method for more information), or passed to an application callback function (see the
DbEnv::set_msgcall() (page 325) method for more information).

If DbEnv: :failchk() determines a thread of control has exited such that database
environment recovery is required, it will return DB_RUNRECOVERY. In this case, the
application should not continue to use the database environment. For a further description
as to the actions the application should take when this failure occurs, see Handling failure in
Data Store and Concurrent Data Store applications, and Handling failure in Transactional Data
Store applications, both in the Berkeley DB Programmer’s Reference Guide.

2/17/2015

DB C++ API Page 238

../../programmer_reference/cam_app.html
../../programmer_reference/cam_app.html
../../programmer_reference/transapp_app.html
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/cam_fail.html
../../programmer_reference/cam_fail.html
../../programmer_reference/transapp_fail.html
../../programmer_reference/transapp_fail.html

Library Version 12.1.6.1 The DbEnv Handle

In multiprocess applications, it is recommended that the DbEnv handle used to invoke the
DbEnv: :failchk() method not be shared and therefore not free-threaded.

The DbEnv: : failchk() method may not be called by the application before the
DbEnv::open() (page 271) method is called.

The DbEnv: : failchk() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.
Errors

The DbEnv: : failchk () method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.
Class

DbEnv
See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 239

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::fileid_reset()

#include <db_cxx.h>

int
DbEnv::fileid_reset(const char *file, u_int32_t flags);

The DbEnv: :fileid_reset() method allows database files to be copied, and then the copy
used in the same database environment as the original.

All databases contain an ID string used to identify the database in the database environment
cache. If a physical database file is copied, and used in the same environment as another file
with the same ID strings, corruption can occur. The DbEnv::fileid_reset() method creates
new ID strings for all of the databases in the physical file.

The DbEnv: :fileid_reset() method modifies the physical file, in-place. Applications should
not reset IDs in files that are currently in use.

The DbEnv: :fileid reset() method may be called at any time during the life of the
application.

The DbEnv: :fileid reset() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
file
The name of the physical file in which new file IDs are to be created.
flags
The flags parameter must be set to 0 or the following value:
e DB_ENCRYPT
The file contains encrypted databases.
Errors

The DbEnv: :fileid_reset() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL
An invalid flag value or parameter was specified.
Class

DbEnv

2/17/2015 DB C++ API Page 240

Library Version 12.1.6.1 The DbEnv Handle

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 241

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::full_version()

#include <db_cxx.h>

static char *
DbEnv::full_version(int *family, int *release, int *major, int *minor,
int *patch);

The DbEnv: :full_version() method returns a pointer to a string, suitable for display,
containing Berkeley DB version information. The string includes Oracle family and release
numbers, as well as Berkeley DB's traditional major, minor, and patch numbers.

Parameters

family

If family is non-NULL, the Oracle family number of the Berkeley DB release is copied to the
memory to which it refers.

release

If release is non-NULL, the Oracle release number of the Berkeley DB release is copied to the
memory to which it refers.

major

If major is non-NULL, the major version of the Berkeley DB release is copied to the memory to
which it refers.

minor

If minor is non-NULL, the minor version of the Berkeley DB release is copied to the memory to
which it refers.

patch

If patch is non-NULL, the patch version of the Berkeley DB release is copied to the memory to
which it refers.

Class
DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 242

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_create_dir()

#include <db_cxx.h>

int
DbEnv: :get_create_dir(const char **dirp);

The DbEnv: :get_create_dir() method returns a pointer to the name of the directory to
create databases in.

The DbEnv: :get_create_dir() method may be called at any time during the life of the
application.

The DbEnv: :get_create_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
dirp

The DbEnv: :get_create_dir() method returns a ponter to the name of the directory in
dirp.

Class
DbEnv
See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 243

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_data_dirs()

#include <db_cxx.h>

int
DbEnv: :get_data_dirs(const char ***dirpp);

The DbEnv: :get_data_dirs() method returns the NULL-terminated array of directories.

The DbEnv: :get_data_dirs() method may be called at any time during the life of the
application.

The DbEnv: :get_data_dirs() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
dirpp

The DbEnv: :get_data_dirs() method returns a reference to the NULL-terminated array of
directories in dirpp.

Class
DbEnv
See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 244

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_encrypt_flags()

#include <db_cxx.h>

int
DbEnv: :get_encrypt_flags(u_int32_t *flagsp);

The DbEnv: :get_encrypt_flags() method returns the encryption flags.

The DbEnv: :get_encrypt_flags() method may be called at any time during the life of the
application.

The DbEnv: :get_encrypt_flags() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The DbEnv: :get_encrypt_flags() method returns the encryption flags in flagsp.
Class

DbEnv
See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 245

Library Version 12.1.6.1 The DbEnv Handle

Db::get_env()

#include <db_cxx.h>

DbEnv *
Db::get_env();

The Db: :get_env() method returns the handle for the database environment underlying the
database.

The Db: :get_env() method may be called at any time during the life of the application.
Class

Db
See Also

Database and Related Methods (page 3)

2/17/2015 DB C++ API Page 246

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_errfile()

#include <db_cxx.h>

void
DbEnv::get_errfile(FILE **errfilep);

The DbEnv: :get_errfile() method returns the FILE * used for displaying additional Berkeley
DB error messages. This C library is set using the DbEnv::set_errfile() (page 302) method.

The DbEnv: :get_errfile() method may be called at any time during the life of the
application.

Parameters

errfilep

The DbEnv: :get_errfile() method returns the FILE * in errfilep.
Class

DbEnv
See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 247

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_errpfx()

#include <db_cxx.h>

void

DbEnv: :get_errpfx(const char **errpfxp);
The DbEnv: :get_errpfx() method returns the error prefix that appears before error
messages issued by Berkeley DB. This error prefix is set using the DbEnv::set_errpfx() (page
305) method.

The DbEnv: :get_errpfx() method may be called at any time during the life of the
application.

Parameters

errpfxp

The DbEnv: :get_errpfx() method returns a reference to the error prefix in errpfxp.
Class

DbEnv
See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 248

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_backup_callbacks()

#include <db_cxx.h>

DB_ENV->get_backup_callbacks(
int (**open_func)(DB_ENV *, const char *dbname,
const char *target, void **handle),
int (**write_func)(DB_ENV *, u_int32_t offset_gbytes,
u_int32_t offset_bytes, u_int32_t size,
u_int8_t *buf, void *handle),
int (**close_func)(DB_ENV *, const char *dbname, void *handle));

The DbEnv: :get_backup_callbacks() method retrieves the three callback functions
which can be used by the DbEnv::backup() (page 222) or DbEnv::dbbackup() (page 229)
methods to override their default behavior. These callbacks are configured using the
DbEnv::set_backup_callbacks() (page 283) method.

The DbEnv: :get_backup_callbacks() method may be called at any time during the life of
the application.

The DbEnv: :get_backup_callbacks() method either returns a non-zero error value or
throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

Parameters

open_func

The open_func parameter is the function used when a target location is opened during a
backup.

write_func
The close_func parameter is the function used to write data during a backup.
close_func

The close_func parameter is the function used when ending a backup and closing a backup
target.

Class
DbEnv

See Also

Database Environments and Related Methods (page 218), DbEnv::set_backup_callbacks() (page
283), DbEnv::backup() (page 222), and DbEnv::dbbackup() (page 229).

2/17/2015 DB C++ API Page 249

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_backup_config()

#include <db_cxx.h>

DB_ENV->get backup config(DB_BACKUP_CONFIG option, u_int32_t *valuep);

The DbEnv: :get backup_config() method retrieves the value set for hot backup tuning
parameters. See the DbEnv::backup() (page 222) and DbEnv::dbbackup() (page 229) methods
for a description of the hot backup APIs. These tuning parameters can be set using the
DbEnv::set_backup_config() (page 286) method.

The DbEnv: :get_backup_config() method may be called at any time during the life of the
application.

The DbEnv: :get_backup_config() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
option

The option parameter identifies the backup parameter to be retrieved. It must be one of the
following:

e DB_BACKUP_WRITE_DIRECT

Turning this on causes direct I/0 to be used when writing pages to the disk.
o DB_BACKUP_READ_COUNT

Configures the number of pages to read before pausing.
« DB_BACKUP_READ_SLEEP

Configures the number of microseconds to sleep between batches of reads.
o DB_BACKUP_SIZE

Configures the size of the buffer, in megabytes, to read from the database.
valuep

The valuep parameter references memory into which is copied the current value of the
backup tuning parameter identified by the option parameter.

Class
DbEnv,
See Also

Database Environments and Related Methods (page 218), DbEnv::set_backup_config() (page
286), DbEnv::backup() (page 222), DbEnv::dbbackup() (page 229)

2/17/2015 DB C++ API Page 250

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_flags()

#include <db_cxx.h>

int
DbEnv::get_flags(u_int32_t *flagsp)

The DbEnv: :get_flags() method returns the configuration flags set for a DbEnv handle.
These flags are set using the DbEnv::set_flags() (page 308) method.

The DbEnv: :get_flags() method may be called at any time during the life of the
application.

The DbEnv: :get_flags() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

flagsp

The DbEnv: :get_flags() method returns the configuration flags in flagsp.
Class

DbEnv
See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 251

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_home()

#include <db_cxx.h>

int
DbEnv: :get_home(const char **homep);

The DbEnv: :get_home() method returns the database environment home directory. This
directory is normally identified when the DbEnv::open() (page 271) method is called.

The DbEnv: :get_home() method may be called at any time during the life of the application.

The DbEnv: :get_home() method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

Class
DbEnv
See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 252

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_intermediate_dir_mode()

#include <db_cxx.h>

int
DbEnv::get_intermediate_dir_mode(u_int32_t *modep);

The DbEnv: :get_intermediate_dir_mode() method returns the intermediate directory
permissions.

Intermediate directories are directories needed for recovery. Normally, Berkeley DB does not
create these directories and will do so only if the DbEnv::set_intermediate_dir_mode() (page
315) method is called.

The DbEnv: :get_intermediate_dir mode() method may be called at any time during the
life of the application.

The DbEnv: :get_intermediate_dir_mode() method returns a non-zero error value on
failure and 0 on success.

Parameters

modep

The DbEnv: :get_intermediate_dir_mode() method returns a reference to the intermediate
directory permissions in modep.

Class
DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 253

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_memory_init()

#include <db_cxx.h>

int
DbEnv::get _memory_init(DB_MEM CONFIG type, u_int32_t *countp);

The DbEnv: :get _memory_ init() method returns the number of objects to allocate and
initialize when an environment is created. The count is returned for a specific named
structure. The count for each structure is set using the DbEnv::set_memory_init() (page 319)
method.

The DbEnv: :get_memory_init() method may be called at any time during the life of the
application.

The DbEnv: :get_memory_init() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

type

The struct parameter identifies the structure for which you want an object count returned. It
must be one of the following values:

+ DB_MEM_LOCK

Initialize locks. A thread uses this structure to lock a page (or record for the QUEUE access
method) and hold it to the end of a transactions.

+ DB_MEM_LOCKOBJECT

Initialize lock objects. For each page (or record) which is locked in the system, a lock object
will be allocated.

+ DB_MEM_LOCKER

Initialize lockers. Each thread which is active in a transactional environment will use a
locker structure either for each transaction which is active, or for each non-transactional
cursor that is active.

+ DB_MEM_LOGID

Initialize the log fileid structures. For each database handle which is opened for writing in a
transactional environment, a log fileid structure is used.

e DB_MEM_TRANSACTION

Initialize transaction structures. Each active transaction uses a transaction structure until it
either commits or aborts.

« DB_MEM_THREAD

2/17/2015

DB C++ API Page 254

Library Version 12.1.6.1 The DbEnv Handle

Initialize thread identification structures. If thread tracking is enabled then each active
thread will use a structure. Note that since a thread does not signal the BDB library that
it will no longer be making calls, unused structures may accumulate until a cleanup is
triggered either using a high water mark or by running DbEnv::failchk() (page 238).

countp

The countp parameter references memory into which the object count for the specified
structure is copied.

Class
DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 255

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_memory_max()

#include <db_cxx.h>

int
DbEnv::get_memory_max(u_int32_t *gbytesp, u_int32_t *bytesp);

The DbEnv: :get_memory_max() method returns the maximum amount of memory to be used
by shared structures other than mutexes and the page cache (memory pool). This value is set
using the DbEnv::set_memory_max() (page 321) method.

The DbEnv: :get_memory_max() method may be called at any time during the life of the
application.

The DbEnv: :get_memory_max() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
gbytesp

The gbytesp parameter references memory into which is copied the maximum number of
gigabytes of memory that can be allocated.

bytesp

The bytesp parameter references memory into which is copied the additional bytes of
memory that can be allocated.

sizep

The sizep parameter references memory into which is copied the maximum number of bytes
to be allocated.

Class

DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 256

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_metadata_dir()

#include <db_cxx.h>

int
DbEnv: :get_metadata_dir(const char **dirp);

The DbEnv: :get_metadata_dir() method returns the directory where persistent metadata is
stored. This location can be set using the DbEnv::set_metadata_dir() (page 323) method.

The DbEnv: :get_metadata_dir() directory may be called at any time during the life of the
application.

The DbEnv: :get_metadata_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
dirp

The dirp parameter references memory into which is copied the directory which contains
persistent metadata files.

Class
DbEnv
See Also

Database Environments and Related Methods (page 218), DbEnv::set_metadata_dir() (page
323)

2/17/2015 DB C++ API Page 257

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_msgfile()

#include <db_cxx.h>

void
DbEnv::get_msgfile(FILE **msgfilep);

The DbEnv: :get_msgfile() method returns the FILE * used for displaying messages. This is
set using the DbEnv::set_msgfile() (page 327) method.

The DbEnv: :get_msgfile() method may be called at any time during the life of the
application.

Parameters

msdfilep

The DbEnv: :get_msgfile() method returns the FILE * in msgfilep.
Class

DbEnv

See Also

Database Environments and Related Methods (page 218), DbEnv::set_msgfile() (page 327)

2/17/2015 DB C++ API Page 258

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_open_flags()

#include <db_cxx.h>

int
DbEnv: :get_open_flags(u_int32_t *flagsp);

The DbEnv: :get_open_flags() method returns the open method flags originally used to
create the database environment.

The DbEnv: :get_open_flags() method may not be called before the DbEnv: :open()
method is called.

The DbEnv: :get_open_flags() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
flagsp

The DbEnv: :get_open_flags() method returns the open method flags originally used to
create the database environment in flagsp.

Class
DbEnv
See Also

Database Environments and Related Methods (page 218), DbEnv::open() (page 271)

2/17/2015 DB C++ API Page 259

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_shm_key()

#include <db_cxx.h>

int
DbEnv::get_shm_key(long *shm_keyp);

The DbEnv: :get_shm_key() method returns the base segment ID. This is used for
Berkeley DB environment shared memory regions created in system memory on VxWorks or
systems supporting X/Open-style shared memory interfaces. It may be specified using the
DbEnv::set_shm_key() (page 328) method.

The DbEnv: :get_shm_key() method may be called at any time during the life of the
application.

The DbEnv: :get_shm_key () method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

shm_keyp

The DbEnv: :get_shm_key() method returns the base segment ID in shm_keyp.
Class

DbEnv
See Also

Database Environments and Related Methods (page 218), DbEnv::set_shm_key() (page 328)

2/17/2015 DB C++ API Page 260

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_thread_count()

#include <db_cxx.h>

int
DbEnv: :get_thread_count(u_int32_t *countp);

The DbEnv: :get_thread_count() method returns the thread count as set by the
DbEnv::set_thread_count() (page 330) method.

The DbEnv: :get_thread_count() method may be called at any time during the life of the
application.

The DbEnv: :get_thread_count() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

countp

The DbEnv: :get_thread_count() method returns the thread count in countp.
Class

DbEnv
See Also

Database Environments and Related Methods (page 218), DbEnv::set_thread_count() (page
330)

2/17/2015 DB C++ API Page 261

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_timeout()

#include <db_cxx.h>

int

DbEnv::get_timeout(db_timeout_t *timeoutp, u_int32_t flag);
The DbEnv: :get_timeout () method returns a value, in microseconds, representing either
lock or transaction timeouts. These values are set using the DbEnv::set_timeout() (page 336)
method.

The DbEnv: :get_timeout () method may be called at any time during the life of the
application.

The DbEnv: :get_timeout () method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
timeoutp

The timeoutp parameter references memory into which the timeout value of the specified
flag parameter is copied.

flag
The flags parameter must be set to one of the following values:
o DB_SET_LOCK_TIMEOUT
Return the timeout value for locks in this database environment.
« DB_SET_REG_TIMEOUT
Return the timeout value for how long to wait for processes to exit the environment before
recovery is started. This flag only has meaning when the DbEnv::open() (page 271) method
was called with the DB_REGISTER flag and recovery must be performed.
e DB_SET_TXN_TIMEOUT
Return the timeout value for transactions in this database environment.
Class
DbEnv
See Also

Database Environments and Related Methods (page 218), DbEnv::set_timeout() (page 336)

2/17/2015 DB C++ API Page 262

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_tmp_dir()

#include <db_cxx.h>

int
DbEnv: :get_tmp_dir(const char **dirp);

The DbEnv: :get_tmp_dir() method returns the database environment temporary file
directory.

The DbEnv: :get_tmp_dir() method may be called at any time during the life of the
application.

The DbEnv: :get_tmp_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
dirp

The DbEnv: :get_tmp_dir() method returns a reference to the database environment
temporary file directory in dirp.

Class
DbEnv
See Also

Database Environments and Related Methods (page 218), DbEnv::set_tmp_dir() (page 339)

2/17/2015 DB C++ API Page 263

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::get_verbose()

#include <db_cxx.h>

int
DbEnv: :get_verbose(u_int32_t which, int *onoffp);
The DbEnv: :get_verbose() method returns whether the specified which parameter is

currently set or not. These parameters are set using the DbEnv::set_verbose() (page 341)
method.

The DbEnv: :get_verbose() method may be called at any time during the life of the
application.

The DbEnv: :get_verbose() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

which

The which parameter is the message value for which configuration is being checked. Must be
set to one of the following values:

e DB_VERB_DEADLOCK
Display additional information when doing deadlock detection.
« DB_VERB_FILEOPS

Display additional information when performing filesystem operations such as open, close or
rename. May not be available on all platforms.

+ DB_VERB_FILEOPS_ALL

Display additional information when performing all filesystem operations, including read and
write. May not be available on all platforms.

« DB_VERB_RECOVERY
Display additional information when performing recovery.
« DB_VERB_REGISTER

Display additional information concerning support for the DB_REGISTER flag to the
DbEnv::open() (page 271) method.

e DB_VERB_REPLICATION

Display all detailed information about replication. This includes the information displayed
by all of the other DB_VERB_REP_* and DB_VERB_REPMGR_* values.

2/17/2015

DB C++ API Page 264

Library Version 12.1.6.1 The DbEnv Handle

« DB_VERB_REP_ELECT

Display detailed information about replication elections.
« DB_VERB_REP_LEASE

Display detailed information about replication master leases.
« DB_VERB_REP_MISC

Display detailed information about general replication processing not covered by the other
DB_VERB_REP_* values.

« DB_VERB_REP_MSGS

Display detailed information about replication message processing.
« DB_VERB_REP_SYNC

Display detailed information about replication client synchronization.
o DB_VERB_REP_SYSTEM

Saves replication system information to a system-owned file. This value is on by default.
e DB_VERB_REPMGR_CONNFATIL

Display detailed information about Replication Manager connection failures.
 DB_VERB_REPMGR_MISC

Display detailed information about general Replication Manager processing.
e DB_VERB_WAITSFOR

Display the waits-for table when doing deadlock detection.
onoffp

The onoffp parameter references memory into which the configuration of the specified which
parameter is copied.

Class

DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 265

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::log_verify()

#include <db_cxx.h>
int
DbEnv: :log_verify(DB_ENV *dbenv, const DB_LOG_VERIFY_CONFIG *config);

The DbEnv: :1log_verify() method verifies the integrity of the log records of an environment
and writes both error and normal messages to the error/message output facility of the
database environment handle.

The DbEnv: :1log_verify() method does not perform the locking function, even in Berkeley
DB environments that are configured with a locking subsystem. Because this function does
not access any database files, you can call it even when the environment has other threads of
control attached and running.

The DbEnv: :1log_verify() method returns DB_LOG_VERIFY_BAD when either log errors are
detected or the internal data storage layer does not work. It returns EINVAL if you specify
wrong configurations. Unless otherwise specified, the DbEnv: :1log verify() method either
returns a non-zero error value or throws an exception that encapsulates a non-zero error value
on failure, and returns 0 on success.

Parameters

config

The configuration parameter of type DB_LOG_VERIFY_CONFIG is for the verification of log
files. A struct variable of this type must be memset to 0 before setting any configurations to
it.

DB_LOG_VERIFY_CONFIG members

struct _ db_logvrfy_config {

int continue_after_fail, verbose;
u_int32_t cachesize;

const char *temp_envhome;

const char *dbfile, *dbname;
DB_LSN start_1lsn, end_lsn;

time_t start_time, end_time;

}s
continue_after_fail

The continue_after_fail parameter specifies whether or not continue the verification process
when an error in the log is detected.

verbose

The verbose parameter specifies whether or not to display verbose output during the
verification process.

2/17/2015

DB C++ API Page 266

Library Version 12.1.6.1 The DbEnv Handle

cachesize

The cachesize parameter specifies the size of the cache of the temporary internal
environment in bytes.

temp_envhome

The temp_envhome parameter is the home directory of the temporary database environment
that is used internally during the verification. It can be NULL, meaning the environment and
all databases are in-memory.

dbfile

The dbfile parameter specifies that for log records involving a database file, only those
related to this database file are verified. Log records not involving database files are verified
regardless of this parameter.

dbname

The dbname parameter specifies that for log records involving a database file, only those
related to this database file are verified. Log records not involving database files are verified
regardless of this parameter.

start_Isn and end_lIsn

The start_Isn and end_Isn parameters specify the range of log records from the entire log
set, that must be verified. Either of them can be [0][0], to specify an open ended range. If
both of them are [0][0] (by default) the entire log is verified.

start_time and end_time

The start_time and end_time parameters specify range of log records from the entire log
set that must be verified for a time range. Either of them can be 0, to specify an open ended
range. If both of them are 0 (by default), the entire log is verified.

Note that the time range specified is not precise, because such a time range is converted to
an lsn range based on the time points we know from transaction commits and checkpoints.

You can specify either an lsn range or a time range. You can neither specify both nor specify
an Ilsn and a time as a range.

Environment Variables

If the database is opened within a database environment, the environment variable DB_HOME
can be used as the path of the database environment home.

Errors
The DbEnv: :1log_verify() method may fail and throw a DbException exception,

encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

2/17/2015 DB C++ API Page 267

Library Version 12.1.6.1 The DbEnv Handle

EINVAL or DB_LOG_VERIFY_BAD.
Class

DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 268

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::Isn_reset()

#include <db_cxx.h>

int
DbEnv::1sn_reset(const char *file, u_int32_t flags);

The DbEnv: :1sn_reset() method allows database files to be moved from one transactional
database environment to another.

Database pages in transactional database environments contain references to the
environment's log files (that is, log sequence numbers, or LSNs). Copying or moving a database
file from one database environment to another, and then modifying it, can result in data
corruption if the LSNs are not first cleared.

Note that LSNs should be reset before moving or copying the database file into a new
database environment, rather than moving or copying the database file and then resetting
the LSNs. Berkeley DB has consistency checks that may be triggered if an application calls
DbEnv::1sn_reset() on a database in a new environment when the database LSNs still
reflect the old environment.

The DbEnv: :1sn_reset () method modifies the physical file, in-place. Applications should not
reset LSNs in files that are currently in use.

The DbEnv: :1sn_reset() method may be called at any time during the life of the
application.

The DbEnv: :1sn_reset() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

file

The name of the physical file in which the LSNs are to be cleared.
flags

The flags parameter must be set to 0 or the following value:

e DB_ENCRYPT

The file contains encrypted databases.

Errors

The DbEnv: :1sn_reset() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

2/17/2015

DB C++ API Page 269

Library Version 12.1.6.1 The DbEnv Handle

Class

DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 270

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::open()

#include <db_cxx.h>

int
DbEnv::open(const char *db_home, u_int32_t flags, int mode);

The DbEnv: :open() method opens a Berkeley DB environment. It provides a structure for
creating a consistent environment for processes using one or more of the features of Berkeley
DB.

The DbEnv: :open() method method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success. If
DbEnv: :open() fails, the DbEnv::close() (page 225) method must be called to discard the
DbEnv handle.

Warning

Using environments with some journaling filesystems might result in log file
corruption. This can occur if the operating system experiences an unclean shutdown
when a log file is being created. Please see Using Recovery on Journaling Filesystems
in the Berkeley DB Programmer's Reference Guide for more information.

Parameters

db_home

The db_home parameter is the database environment's home directory. For more information
on db_home, and filename resolution in general, see Berkeley DB File Naming. The
environment variable DB_HOME may be used as the path of the database home, as described
in Berkeley DB File Naming.

When using a Unicode build on Windows (the default), the db_home argument will be
interpreted as a UTF-8 string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter specifies the subsystems that are initialized and how the application’s
environment affects Berkeley DB file naming, among other things. The flags parameter must
be set to 0 or by bitwise inclusively OR'ing together one or more of the values described in this
section.

Because there are a large number of flags that can be specified, they have been grouped
together by functionality. The first group of flags indicates which of the Berkeley DB
subsystems should be initialized.

The choice of subsystems initialized for a Berkeley DB database environment is specified by
the thread of control initially creating the environment. Any subsequent thread of control
joining the environment will automatically be configured to use the same subsystems as were
created in the environment (unless the thread of control requests a subsystem not available
in the environment, which will fail). Applications joining an environment, able to adapt to

2/17/2015

DB C++ API Page 271

../../programmer_reference/transapp_journal.html
../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html

Library Version 12.1.6.1 The DbEnv Handle

whatever subsystems have been configured in the environment, should open the environment
without specifying any subsystem flags. Applications joining an environment, requiring specific
subsystems from their environments, should open the environment specifying those specific
subsystem flags.

« DB_INIT_CDB

Initialize locking for the Berkeley DB Concurrent Data Store product. In this mode, Berkeley
DB provides multiple reader/single writer access. The only other subsystem that should be
specified with the DB_INIT_CDB flag is DB_INIT_MPOOL.

« DB_INIT_LOCK

Initialize the locking subsystem. This subsystem should be used when multiple processes
or threads are going to be reading and writing a Berkeley DB database, so that they do not
interfere with each other. If all threads are accessing the database(s) read-only, locking

is unnecessary. When the DB_INIT_LOCK flag is specified, it is usually necessary to run a
deadlock detector, as well. See db_deadlock and DbEnv::lock_detect() (page 380) for more
information.

 DB_INIT_LOG

Initialize the logging subsystem. This subsystem should be used when recovery from
application or system failure is necessary. If the log region is being created and log files are
already present, the log files are reviewed; subsequent log writes are appended to the end
of the log, rather than overwriting current log entries.

« DB_INIT_MPOOL

Initialize the shared memory buffer pool subsystem. This subsystem should be used
whenever an application is using any Berkeley DB access method.

« DB_INIT_REP

Initialize the replication subsystem. This subsystem should be used whenever an application
plans on using replication. The DB_INIT_REP flag requires the DB_INIT_TXN and
DB_INIT_LOCK flags also be configured.

You can also specify this flag in the DB_CONFIG configuration file. The syntax is a single

line with the string "set_open_flags", one or more whitespace characters, the string
"DB_INIT_REP", optionally one or more whitespace characters and the string "on" or

"off". If the optional string is omitted, the default is "on"; for example, "set_open_flags
DB_INIT_REP" or "set_open_flags DB_INIT_REP on". Because the DB_CONFIG file is read when
the database environment is opened, it will silently overrule configuration done before that
time.

o DB_INIT_TXN

Initialize the transaction subsystem. This subsystem should be used when recovery
and atomicity of multiple operations are important. The DB_INIT_TXN flag implies the
DB_INIT_LOG flag.

2/17/2015

DB C++ API Page 272

../../programmer_reference/cam.html#cam_intro
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DbEnv Handle

The second group of flags govern what recovery, if any, is performed when the environment is
initialized:

e DB_RECOVER

Run normal recovery on this environment before opening it for normal use. If this flag is
set, the DB_CREATE and DB_INIT_TXN flags must also be set, because the regions will be
removed and re-created, and transactions are required for application recovery.

e DB_RECOVER_FATAL

Run catastrophic recovery on this environment before opening it for normal use. If this flag
is set, the DB_CREATE and DB_INIT_TXN flags must also be set, because the regions will be
removed and re-created, and transactions are required for application recovery.

A standard part of the recovery process is to remove the existing Berkeley DB environment and
create a new one in which to perform recovery. If the thread of control performing recovery
does not specify the correct region initialization information (for example, the correct
memory pool cache size), the result can be an application running in an environment with
incorrect cache and other subsystem sizes. For this reason, the thread of control performing
recovery should specify correct configuration information before calling the DbEnv: :open()
method; or it should remove the environment after recovery is completed, leaving creation of
the correctly sized environment to a subsequent call to the DbEnv: :open() method.

All Berkeley DB recovery processing must be single-threaded; that is, only a single thread of
control may perform recovery or access a Berkeley DB environment while recovery is being
performed. Because it is not an error to specify DB_RECOVER for an environment for which
no recovery is required, it is reasonable programming practice for the thread of control
responsible for performing recovery and creating the environment to always specify the
DB_CREATE and DB_RECOVER flags during startup.

The third group of flags govern file-naming extensions in the environment:
« DB_USE_ENVIRON

The Berkeley DB process’ environment may be permitted to specify information to be used
when naming files; see Berkeley DB File Naming. Because permitting users to specify which
files are used can create security problems, environment information will be used in file
naming for all users only if the DB_USE_ENVIRON flag is set.

« DB_USE_ENVIRON_ROOT

The Berkeley DB process' environment may be permitted to specify information to be
used when naming files; see Berkeley DB File Naming. Because permitting users to specify
which files are used can create security problems, if the DB_USE_ENVIRON_ROOT flag is
set, environment information will be used in file naming only for users with appropriate
permissions (for example, users with a user-ID of 0 on UNIX systems).

Finally, there are a few additional unrelated flags:

e DB_CREATE

2/17/2015

DB C++ API Page 273

../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html

Library Version 12.1.6.1 The DbEnv Handle

Cause Berkeley DB subsystems to create any underlying files, as necessary.
DB_LOCKDOWN

Lock shared Berkeley DB environment files and memory-mapped databases into memory.
If the operating systems does not support the mlock() system call, then this flag has no
effect.

DB_FAILCHK

Internally call the DbEnv::failchk() (page 238) method as part of opening the environment.
When DB_FAILCHK is specified, a check is made to ensure all DbEnv: :failchk()
prerequisites are meet.

If the DB_FAILCHK flag is used in conjunction with the DB_REGISTER flag, then a check

will be made to see if the environment needs recovery. If recovery is needed, a call will

be made to the DbEnv: :failchk() method to release any database reads locks held by
the thread of control that exited and, if needed, to abort the unresolved transaction. If
DbEnv::failchk() determines environment recovery is still required, the recovery actions
for DB_REGISTER will be followed.

If the DB_FAILCHK flag is not used in conjunction with the DB_REGISTER flag, then make
an internal call to DbEnv: :failchk() as the last step of opening the environment.

If DbEnv: :failchk() determines database environment recovery is required,
DB_RUNRECOVERY will be returned.

DB_PRIVATE

Allocate region memory from the heap instead of from memory backed by the filesystem or
system shared memory.

Note

Use of this flag means that the environment can only be accessed by one
environment handle. The environment cannot be accessed by multiple processes.
This is true even if one of those processes is one of the the Berkeley DB utilities.
(For example, db_archive, db_checkpoint or db_stat.) Nor can a single process open
multiple handles to the environment.

This flag has two effects on the Berkeley DB environment. First, all underlying data
structures are allocated from per-process memory instead of from shared memory that
is accessible to more than a single process. Second, mutexes are only configured to work
between threads.

See Shared Memory Regions for more information.

You can also specify this flag in the DB_CONFIG configuration file. The syntax is a single
line with the string "set_open_flags", one or more whitespace characters, the string
"DB_PRIVATE", optionally one or more whitespace characters and the string "on" or "off". If
the optional string is omitted, the default is "on"; for example, "set_open_flags DB_PRIVATE"

2/17/2015

DB C++ API Page 274

../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/env_region.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DbEnv Handle

or "set_open_flags DB_PRIVATE on". Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

e DB_REGISTER

Check to see if recovery needs to be performed before opening the database environment.
(For this check to be accurate, all processes using the environment must specify
DB_REGISTER when opening the environment.) If recovery needs to be performed for any
reason (including the initial use of the DB_REGISTER flag), and DB_RECOVER is also specified,
recovery will be performed and the open will proceed normally. If recovery needs to be
performed and DB_RECOVER is not specified, DB_RUNRECOVERY will be returned. If recovery
does not need to be performed, the DB_RECOVER flag will be ignored. See Architecting
Transactional Data Store applications for more information.

+ DB_SYSTEM_MEM

Allocate region memory from system shared memory instead of from heap memory or
memory backed by the filesystem.

See Shared Memory Regions for more information.
e DB_THREAD

Cause the DbEnv handle returned by DbEnv: :open() to be free-threaded; that is,
concurrently usable by multiple threads in the address space. The DB_THREAD flag should
be specified if the DbEnv handle will be concurrently used by more than one thread in the
process, or if any Db handles opened in the scope of the DbEnv handle will be concurrently
used by more than one thread in the process.

If this flag is specified, then any database opened using this environment handle will also be
free-threaded.

Be aware that enabling this flag will serialize calls to DB when using the handle across
threads. If concurrent scaling is important to your application we recommend opening
separate handles for each thread (and not specifying this flag), rather than sharing handles
between threads.

This flag is required when using the Replication Manager.

You can also specify this flag in the DB_CONFIG configuration file. The syntax is a single

line with the string "set_open_flags", one or more whitespace characters, the string
"DB_THREAD", optionally one or more whitespace characters and the string "on" or "off". If
the optional string is omitted, the default is "on"; for example, "set_open_flags DB_THREAD"
or "set_open_flags DB_THREAD on". Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

mode
On Windows systems, the mode parameter is ignored.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, files created by Berkeley
DB are created with mode mode (as described in chmod(2)) and modified by the process’

2/17/2015

DB C++ API Page 275

../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/transapp_app.html
../../programmer_reference/transapp_app.html
../../programmer_reference/env_region.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DbEnv Handle

umask value at the time of creation (see umask(2)). Created files are owned by the process
owner; the group ownership of created files is based on the system and directory defaults,
and is not further specified by Berkeley DB. System shared memory segments created by
Berkeley DB are created with mode mode, unmodified by the process’' umask value. If mode is
0, Berkeley DB will use a default mode of readable and writable by both owner and group.

Errors

The DbEnv: :open() method may fail and throw a DbException exception, encapsulating one
of the following non-zero errors, or return one of the following non-zero errors:

DB_RUNRECOVERY

Either the DB_REGISTER flag was specified, a failure occurred, and no recovery flag was
specified, or the DB_FAILCHK flag was specified and recovery was deemed necessary.

DB_VERSION_MISMATCH

The version of the Berkeley DB library doesn't match the version that created the database
environment.

EAGAIN
The shared memory region was locked and (repeatedly) unavailable.
EINVAL

If the DB_THREAD flag was specified and fast mutexes are not available for this architecture;
The DB_HOME or TMPDIR environment variables were set, but empty; An incorrectly formatted
NAME VALUE entry or line was found; or if an invalid flag value or parameter was specified.

ENOENT

The file or directory does not exist.
Class

DbEnv
See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 276

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::remove()

#include <db_cxx.h>

int
DbEnv::remove(const char *db_home, u_int32_t flags);

The DbEnv: :remove() method destroys a Berkeley DB environment if it is not currently in
use. The environment regions, including any backing files, are removed. Any log or database
files and the environment directory are not removed.

If there are processes that have called DbEnv::open() (page 271) without calling
DbEnv::close() (page 225) (that is, there are processes currently using the environment),
DbEnv: :remove () will fail without further action unless the DB_FORCE flag is set, in which
case DbEnv: :remove () will attempt to remove the environment, regardless of any processes
still using it.

The result of attempting to forcibly destroy the environment when it is in use is unspecified.
Processes using an environment often maintain open file descriptors for shared regions within
it. On UNIX systems, the environment removal will usually succeed, and processes that

have already joined the region will continue to run in that region without change. However,
processes attempting to join the environment will either fail or create new regions. On other
systems in which the unlink(2) system call will fail if any process has an open file descriptor
for the file (for example Windows/NT), the region removal will fail.

Calling DbEnv: : remove () should not be necessary for most applications because the
Berkeley DB environment is cleaned up as part of normal database recovery procedures.
However, applications may want to call DbEnv: : remove() as part of application shut down
to free up system resources. For example, if the DB_SYSTEM_MEM flag was specified to
DbEnv::open() (page 271), it may be useful to call DbEnv: :remove() in order to release
system shared memory segments that have been allocated. Or, on architectures in which
mutexes require allocation of underlying system resources, it may be useful to call
DbEnv: :remove() in order to release those resources. Alternatively, if recovery is not
required because no database state is maintained across failures, and no system resources
need to be released, it is possible to clean up an environment by simply removing all the
Berkeley DB files in the database environment's directories.

In multithreaded applications, only a single thread may call the DbEnv: : remove () method.

A DbEnv handle that has already been used to open an environment should not be used to call
the DbEnv: :remove () method; a new DbEnv handle should be created for that purpose.

After DbEnv: :remove() has been called, regardless of its return, the Berkeley DB
environment handle may not be accessed again.

The DbEnv: :remove () method either returns a non-zero error value or throws an exception
that encapsulates a non-zero error value on failure, and returns 0 on success.

2/17/2015

DB C++ API Page 277

Library Version 12.1.6.1 The DbEnv Handle

Parameters
db_home
The db_home parameter names the database environment to be removed.

When using a Unicode build on Windows (the default), the db_home argument will be
interpreted as a UTF-8 string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

e DB_FORCE

If set, the environment is removed, regardless of any processes that may still using it,
and no locks are acquired during this process. (Generally, this flag is specified only when
applications were unable to shut down cleanly, and there is a risk that an application may
have died holding a Berkeley DB lock.)

« DB_USE_ENVIRON

The Berkeley DB process’ environment may be permitted to specify information to be used
when naming files; see Berkeley DB File Naming. Because permitting users to specify which
files are used can create security problems, environment information will be used in file
naming for all users only if the DB_USE_ENVIRON flag is set.

« DB_USE_ENVIRON_ROOT

The Berkeley DB process' environment may be permitted to specify information to be
used when naming files; see Berkeley DB File Naming. Because permitting users to specify
which files are used can create security problems, if the DB_USE_ENVIRON_ROOT flag is
set, environment information will be used in file naming only for users with appropriate
permissions (for example, users with a user-ID of 0 on UNIX systems).

Errors

The DbEnv: : remove () method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EBUSY

The shared memory region was in use and the force flag was not set.
Class

DbEnv
See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 278

../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::set_alloc()

#include <db_cxx.h>

extern "C" {
typedef void *(*db_malloc_fcn_type)(size_t);
typedef void *(*db_realloc_fcn_type)(void *, size_t);
typedef void *(*db_free_fcn_type)(void *);

}s5

int

DbEnv: :set_alloc(db_malloc_fcn_type app_malloc,
db_realloc_fcn_type app_realloc,
db_free_fcn_type app_free);

Set the allocation functions used by the DbEnv and Db methods to allocate or free memory
owned by the application.

There are a number of interfaces in Berkeley DB where memory is allocated by the library
and then given to the application. For example, the DB_DBT_MALLOC flag, when specified
in the Dbt object, will cause the Db methods to allocate and reallocate memory which then
becomes the responsibility of the calling application. Other examples are the Berkeley DB
interfaces which return statistical information to the application: Db::stat() (page 147),
DbEnv::lock_stat() (page 388), DbEnv::log_archive() (page 407), DbEnv::log_stat() (page
421), DbEnv::memp_stat() (page 455), and DbEnv::txn_stat() (page 659). There is one
method in Berkeley DB where memory is allocated by the application and then given to the
library: the callback specified to Db::associate() (page 6).

On systems in which there may be multiple library versions of the standard allocation routines
(notably Windows NT), transferring memory between the library and the application will fail
because the Berkeley DB library allocates memory from a different heap than the application
uses to free it. To avoid this problem, the DbEnv: :set_alloc() and Db::set_alloc() (page 85)
methods can be used to pass Berkeley DB references to the application's allocation routines.

It is not an error to specify only one or two of the possible allocation function parameters to
these interfaces; however, in that case the specified interfaces must be compatible with the
standard library interfaces, as they will be used together. The functions specified must match
the calling conventions of the ANSI C X3.159-1989 (ANSI C) library routines of the same name.

The DbEnv: :set_alloc() method configures operations performed using the specified DbEnv
handle, not all operations performed on the underlying database environment.

The DbEnv: :set_alloc() method may not be called after the DbEnv::open() (page 271)
method is called.

The DbEnv: :set_alloc() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

2/17/2015

DB C++ API Page 279

Library Version 12.1.6.1

The DbEnv Handle

Parameters

app_malloc

The app_malloc parameter is the application-specified malloc function.

app_realloc

The app_realloc parameter is the application-specified realloc function.

app_free

The app_free parameter is the application-specified free function.

Errors

The DbEnv: :set_alloc() method may fail and throw a DbException exception, encapsulating
one of the following non-zero errors, or return one of the following non-zero errors:

EINVAL

If the method was called after DbEnv::open() (page 271) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015

DB C++ API Page 280

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::set_app_dispatch()

#include <db_cxx.h>

int
DbEnv: :set_app_dispatch(int (*tx_recover)(DbEnv *dbenv,
Dbt *log _rec, DbLsn *1sn, db_recops op));

Declare a function to be called during transaction abort and recovery to process application-
specific log records.

The DbEnv: :set_app_dispatch() method configures operations performed using
the specified DbEnv handle, not all operations performed on the underlying database
environment.

The DbEnv: :set_app_dispatch() method may not be called after the DbEnv::open() (page

271) method is called. If the database environment already exists when DbEnv::open() (page

271) is called, the information specified to DbEnv: :set_app_dispatch() must be consistent
with the existing environment or corruption can occur.

The DbEnv: :set_app_dispatch() method returns a non-zero error value on failure and 0 on
success.

Parameters
tx_recover

The tx_recover parameter is the application's abort and recovery function. The function takes
four parameters:

e dbenv
The dbenv parameter is the enclosing database environment handle.
* log rec
The log_rec parameter is a log record.
e 1sn
The Isn parameter is a log sequence number.
e op
The op parameter is one of the following values:
« DB_TXN_BACKWARD ROLL

The log is being read backward to determine which transactions have been committed
and to abort those operations that were not; undo the operation described by the log
record.

2/17/2015 DB C++ API Page 281

Library Version 12.1.6.1 The DbEnv Handle

« DB_TXN_FORWARD_ROLL
The log is being played forward; redo the operation described by the log record.
o DB_TXN_ABORT

The log is being read backward during a transaction abort; undo the operation described
by the log record.

o DB_TXN_APPLY
The log is being applied on a replica site; redo the operation described by the log record.
o DB_TXN_PRINT

The log is being printed for debugging purposes; print the contents of this log record in
the desired format.

The DB_TXN_FORWARD_ROLL and DB_TXN_APPLY operations frequently imply the same
actions, redoing changes that appear in the log record, although if a recovery function

is to be used on a replication client where reads may be taking place concurrently with

the processing of incoming messages, DB_TXN_APPLY operations should also perform
appropriate locking. The macro DB_REDO(op) checks that the operation is one of
DB_TXN_FORWARD_ROLL or DB_TXN_APPLY, and should be used in the recovery code to
refer to the conditions under which operations should be redone. Similarly, the macro
DB_UNDO(op) checks if the operation is one of DB_TXN_BACKWARD_ROLL or DB_TXN_ABORT.

The function must return 0 on success and either errno or a value outside of the Berkeley DB
error name space on failure.

Errors

The DbEnv: :set_app_dispatch() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 271) was called; or if an invalid flag value
or parameter was specified.

Class
DbEnv, DbTxn
See Also

Transaction Subsystem and Related Methods (page 643)

2/17/2015 DB C++ API Page 282

Library Version 12.1.6.1 The DbEnv Handle

DbEnNv::set_backup_callbacks()

#include <db_cxx.h>

DB_ENV->set_backup_callbacks(
int (*open_func)(DB_ENV *, const char *dbname,
const char *target, void **handle),
int (*write_func)(DB_ENV *, u_int32_t offset_gbytes,
u_int32_t offset_bytes, u_int32_t size,
u_int8 t *buf, void *handle),
int (*close_func)(DB_ENV *, const char *dbname, void *handle));

The DbEnv: :set_backup_callbacks() method configures three callback functions which
can be used by the DbEnv::backup() (page 222) or DbEnv::dbbackup() (page 229) methods to
override their default behavior. If one callback is configured, then all three callbacks must
be configured. These callbacks are required if the target parameter is set to NULL for the
DbEnv::backup() (page 222) or DbEnv::dbbackup() (page 229) methods.

The DbEnv: :set_backup_callbacks() method configures operations performed using
the specified DbEnv handle, not all operations performed on the underlying database
environment.

The DbEnv: :set_backup_callbacks() method may be called at any time during the life of
the application.

The DbEnv: :set_backup_callbacks() method either returns a non-zero error value or
throws an exception that encapsulates a non-zero error value on failure, and returns 0 on
success.

Parameters

open_func

The open_func parameter is the function used when a target location is opened during a
backup. This function should do whatever is necessary to prepare the backup destination for
writing the data.

This function takes four parameters:
e dbenv

The dbenv parameter is the enclosing database environment handle.
* dbname

The dbname parameter is the name of the database being backed up.
e target

The target parameter is the backup's directory destination.

e handle

2/17/2015

DB C++ API Page 283

Library Version 12.1.6.1 The DbEnv Handle

The handle parameter references the handle (usually a file handle) to which the backup will
be written.

write_func

The write_func parameter is the function used to write data during a backup. The function
takes six parameters:

e dbenv
The dbenv parameter is the enclosing database environment handle.
o offset_gbytes

The offset_gbytes parameter specifies the number of gigabytes into the output
handle where the data can should be written. This value, plus the value specified on
offset_bytes, indicates the offset within the output handle where the backup should
begin.

o offset_bytes

The offset_bytes parameter specifies the number of bytes into the output handle where the
data can be located. This value, plus the value specified on offset_gbytes, indicates the
offset within the output handle where the backup should begin.

e size

The size parameter specifies the number of bytes to back up from the buffer.
e buf

The buf parameter is the buffer which contains the data to be backed up.
e handle

The handle parameter references the handle (usually a file handle) to which the backup will
be written.

close_func

The close_func parameter is the function used when ending a backup and closing a backup
target. The function takes three parameters:

» dbenv
The dbenv parameter is the enclosing database environment handle.
e dbname
The dbname parameter is the name of the database that has now been backed up.

e handle

2/17/2015

DB C++ API Page 284

Library Version 12.1.6.1 The DbEnv Handle

The handle parameter references the handle (usually a file handle) to which the backup
was written, and which now must be closed or otherwise discarded.

Class
DbEnv
See Also

Database Environments and Related Methods (page 218), DbEnv::get_backup_callbacks() (page
249), DbEnv::backup() (page 222), and DbEnv::dbbackup() (page 229).

2/17/2015 DB C++ API Page 285

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::set_backup_config()

#include <db_cxx.h>
DB_ENV->set_backup_config(DB_BACKUP_CONFIG option, u_int32_t value);

The DbEnv: :set_backup_config() method configures tuning parameters for the hot backup
APIs. See the DbEnv::backup() (page 222) and DbEnv::dbbackup() (page 229) methods for a
description of the hot backup APIs.

The DbEnv: :set_backup_config() method configures operations performed using
the specified DbEnv handle, not all operations performed on the underlying database
environment.

The DbEnv: :set_backup_config() method may be called at any time during the life of the
application.

The DbEnv: :set_backup_config() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

option

The option parameter identifies the backup parameter to be modified. It must be one of the
following:

« DB_BACKUP_WRITE_DIRECT

Turning this on causes direct I/0 to be used when writing pages to the disk. For some
environments, direct 1/0 can provide faster write throughput, but usually it is slower
because the OS buffer pool offers asynchronous activity.

By default, this option is turned off.
« DB_BACKUP_READ COUNT

Configures the number of pages to read before pausing. Increasing this value increases the
amount of 1/0 the backup process performs for any given time interval. If your application
is already heavily 1/0 bound, setting this value to a lower number may help to improve your
overall data throughput by reducing the I/0 demands placed on your system.

By default, all pages are read without a pause.
« DB_BACKUP_READ SLEEP

Configures the number of microseconds to sleep between batches of reads. Increasing this
value decreases the amount of 1/0 the backup process performs for any given time interval.
If your application is already heavily I/0 bound, setting this value to a higher number may
help to improve your overall data throughput by reducing the 1/0 demands placed on your
system.

2/17/2015

DB C++ API Page 286

Library Version 12.1.6.1 The DbEnv Handle

« DB_BACKUP_SIZE

Configures the size of the buffer, in bytes, to read from the database. Default is 1
megabyte.

value

The value parameter sets the configuration value for the option identified by the option
parameter. For those options which can only be turned on or off, this parameter should be set
to o for off and 1 for on. Otherwise, set this parameter to an integer value that represents the
number of units for which you are configuring the backup APlIs.

Class
DbEnv,
See Also

Database Environments and Related Methods (page 218), DbEnv::get_backup_config() (page
250), DbEnv::backup() (page 222), DbEnv::dbbackup() (page 229)

2/17/2015 DB C++ API Page 287

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::set_data_dir()

#include <db_cxx.h>

int
DbEnv::set_data_dir(const char *dir);

Note

This interface has been deprecated. You should use DbEnv::add_data_dir() (page 220)
and DbEnv::set_create_dir() (page 290) instead.

Set the path of a directory to be used as the location of the access method database files.
Paths specified to the Db::open() (page 71) function will be searched relative to this path.
Paths set using this method are additive, and specifying more than one will result in each
specified directory being searched for database files. If any directories are specified, database
files will always be created in the first path specified.

If no database directories are specified, database files must be named either by absolute
paths or relative to the environment home directory. See Berkeley DB File Naming for more
information.

The database environment’s data directories may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_data_dir", one or more whitespace characters, and the directory name. Note that if you
use this method for your application, and you also want to use the db_recover (page 724)

or db_archive (page 701) utilities, then you should create a DB_CONFIG file and set the
"set_data_dir" parameter in it.

The DbEnv: :set_data_dir() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv: :set_data_dir() method may not be called after the DbEnv::open() (page 271)
method is called. If the database environment already exists when DbEnv::open() (page 271)
is called, the information specified to DbEnv: :set_data_dir() must be consistent with the
existing environment or corruption can occur.

The DbEnv: :set_data_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

dir

The dir parameter is a directory to be used as a location for database files. This directory
must currently exist at environment open time.

When using a Unicode build on Windows (the default), this argument will be interpreted as a
UTF-8 string, which is equivalent to ASCII for Latin characters.

2/17/2015

DB C++ API Page 288

../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DbEnv Handle

Errors

The DbEnv: :set_data_dir() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 271) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 289

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::set_create_dir()

#include <db_cxx.h>

int
DbEnv: :set_create_dir(const char *dir);

Sets the path of a directory to be used as the location to create the access method database
files. When the Db::open() (page 71) function is used to create a file it will be created relative
to this path.

If no database directories are specified, database files will be created either by absolute
paths or relative to the environment home directory. See Berkeley DB File Naming for more
information.

The database environment's create directory may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_create_dir", one or more whitespace characters, and the directory name.

The DbEnv: :set_create_dir() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv: :set_create_dir() method may be called at any time.

The DbEnv: :set_create_dir() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
dir

The dir parameter is a directory to be used to create database files. This directory must be
one of the directories specified via a call to DbEnv::add_data_dir() (page 220)

When using a Unicode build on Windows (the default), this argument will be interpreted as a
UTF-8 string, which is equivalent to ASCII for Latin characters.

Errors

The DbEnv: :set_create_dir() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 271) was called; or if an invalid flag value
or parameter was specified.

Class

DbEnv

2/17/2015 DB C++ API Page 290

../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DbEnv Handle

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 291

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::set_encrypt()

#include <db_cxx.h>
int
DbEnv::set_encrypt(const char *passwd, u_int32_t flags);
Set the password used by the Berkeley DB library to perform encryption and decryption.

The DbEnv: :set_encrypt() method configures a database environment, not only operations
performed using the specified DbEnv handle.

The DbEnv: :set_encrypt() method may not be called after the DbEnv::open() (page 271)
method is called. If the database environment already exists when DbEnv::open() (page 271)
is called, the information specified to DbEnv: :set_encrypt() must be consistent with the
existing environment or an error will be returned.

The DbEnv: :set_encrypt() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters
passwd
The passwd parameter is the password used to perform encryption and decryption.
flags
The flags parameter must be set to 0 or the following value:
« DB_ENCRYPT_AES

Use the Rijndael/AES (also known as the Advanced Encryption Standard and Federal
Information Processing Standard (FIPS) 197) algorithm for encryption or decryption.

Errors

The DbEnv: :set_encrypt() method may fail and throw a DbException exception,
encapsulating one of the following non-zero errors, or return one of the following non-zero
errors:

EINVAL

If the method was called after DbEnv::open() (page 271) was called; or if an invalid flag value
or parameter was specified.

EOPNOTSUPP

Cryptography is not available in this Berkeley DB release.
Class

DbEnv

2/17/2015 DB C++ API Page 292

Library Version 12.1.6.1 The DbEnv Handle

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 293

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::set_event_notify()

#include <db_cxx.h>

int

DbEnv::set_event_notify(
void (*db_event_ fcn)(DB_ENV *dbenv, u_int32_t event,
void *event_info));

The DbEnv: :set_event_notify() method configures a callback function which is called to
notify the process of specific Berkeley DB events.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

The DbEnv: :set_event_notify() method configures operations performed using
the specified DbEnv handle, not all operations performed on the underlying database
environment.

The DbEnv: :set_event_notify() method may be called at any time during the life of the
application.

The DbEnv: :set_event_notify() method either returns a non-zero error value or throws an
exception that encapsulates a non-zero error value on failure, and returns 0 on success.

Parameters

db_event_fcn

The db_event_fcn parameter is the application’'s event notification function. The function
takes three parameters:

¢ dbenv

The dbenv parameter is the enclosing database environment handle.
e event

The event parameter is one of the following values:

e DB_EVENT_FAILCHK_PANIC

The thread is about to return a DB_RUNRECOVERY error because a prior panic event has
occurred and the thread has been marked by DbEnv::failchk() (page 238) as being held by
a crashed process.

The event_info parameter is a pointer to a DB_FAILCHK_PANIC_INFO structure, which
contains these fields:
int error;

2/17/2015

DB C++ API Page 294

../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY

Library Version 12.1.6.1

The DbEnv Handle

char symptom[DB_FAILURE_SYMPTOM_SIZE];

When this event is seen, the database environment has failed. All threads of control in
the database environment should exit, and recovery should be run.

This event is generated only when failchk broadcasting is configured. You configured
broadcasting by specifying - -enable-failchk_broadcast when you compile your
Berkeley DB library.

DB_EVENT_MUTEX_DIED

The thread is about to return a DB_RUNRECOVERY error because a mutex it requires has
been marked by DbEnv::failchk() (page 238) as being held by a crashed process.

The event_info parameter is a pointer to a DB_MUTEX_DIED_INFO structure, which
contains these fields:

pid_t mtxdied_pid;
db_threadid_t mtxdied_tid;
db_mutex_t mtxdied_mtx;
char mtxdied_desc[DB_MUTEX_DESCRIBE_STRLEN];

When this event is seen, the database environment has failed. All threads of control in
the database environment should exit, and recovery should be run.

This event is generated only when failchk broadcasting is configured. You configured
broadcasting by specifying - -enable-failchk_broadcast when you compile your
Berkeley DB library.

DB_EVENT_PANIC

Errors can occur in the Berkeley DB library where the only solution is to shut down the
application and run recovery (for example, if Berkeley DB is unable to allocate heap
memory). In such cases, the Berkeley DB methods will return DB_RUNRECOVERY. It is
often easier to simply exit the application when such errors occur rather than gracefully
return up the stack.

When event is set to DB_EVENT_PANIC, the database environment has failed. All threads
of control in the database environment should exit the environment, and recovery should
be run.

DB_EVENT_REG_ALIVE
Recovery is needed in an environment where the DB_REGISTER flag was specified on the
DbEnv::open() (page 271) method and there is a process attached to the environment.

The callback function is triggered once for each process attached.

The event_info parameter points to a pid_t value containing the process identifier (pid)
of the process the Berkeley DB library detects is attached to the environment.

« DB_EVENT_REG_PANIC

2/17/2015

DB C++ API Page 295

../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY

Library Version 12.1.6.1

The DbEnv Handle

Recovery is needed in an environment where the DB_REGISTER flag was specified on the
DbEnv::open() (page 271) method. All threads of control in the database environment
should exit the environment.

This event is different than the DB_EVENT_PANIC event because it can only be triggered
when DB_REGISTER was specified. It can be used to distinguish between the case when a
process dies in the environment and recovery is initiated versus the case when an error
happened (for example, if Berkeley DB is unable to allocate heap memory)

DB_EVENT_REP_AUTOTAKEOVER_FAILED

The current subordinate process attempted to take over as the replication process, but
the attempt failed.

The replication process is the main Replication Manager process which is responsible
for sending and processing most Replication Manager messages. Normally this is the
first process started in a replication group, but when that process shuts down cleanly, a
subordinate process will take over if one is available.

This event means that this Replication Manager subordinate process attempted to take
over as the replication process, but it failed. Replication Manager is not running locally
but may be restarted by invoking DbEnv::repmgr_start() (page 608).

The DB_EVENT_REP_AUTOTAKEOVER_FAILED event is provided only to applications
configured for the Replication Manager.

DB_EVENT_REP_CLIENT
The local site is now a replication client.

This event is generated when the replication role changes to client, either from master
or from being unset. The role is unset when an environment is first created and after an
environment is recovered. This event is not generated when restarting replication in an
environment that was previously a client and was opened without recovery.

DB_EVENT_REP_CONNECT_BROKEN

A previously established Replication Manager message connection between the local site
and a remote site has been broken. This event supplies the EID of the remote site, and an
integer error code that identifies the reason the connection was broken.

A non-zero error code indicates an unexpected condition such as a hardware failure or
a protocol error. An application might respond by emitting an informational message or
passing this information to other parts of the application using the app_private field.
A zero error code indicates that the connection was cleanly closed by the other end.
Replication Manager retries broken connections periodically until they are restored.

The DB_EVENT_REP_CONNECT_BROKEN event is provided only to applications configured for
the Replication Manager.

2/17/2015

DB C++ API Page 296

Library Version 12.1.6.1

The DbEnv Handle

« DB_EVENT_REP_CONNECT_ESTD

A Replication Manager message connection has been established between the local site
and a remote site. This event supplied the EID of the remote site.

The DB_EVENT_REP_CONNECT_ESTD event is provided only to applications configured for
the Replication Manager.

DB_EVENT_REP_CONNECT_TRY_FAILED

A Replication Manager attempt to establish a connection between the local site and a
remote site has failed. This event supplies the EID of the remote site, and an integer
error code that identifies the reason the connection attempt failed.

The DB_EVENT_REP_CONNECT_TRY_FAILED event is provided only to applications
configured for the Replication Manager.

DB_EVENT_REP_DUPMASTER

Replication Manager has detected a duplicate master situation, and has changed the
local site to the client role as a result. If the DB_REPMGR_CONF_ELECTIONS (page
561) configuration parameter has been turned off, the application should now choose
and assign the correct master site. If DB_REPMGR_CONF_ELECTIONS is turned on, the
application may ignore this event.

The DB_EVENT_REP_DUPMASTER event is provided only to applications configured for the
Replication Manager.

DB_EVENT_REP_ELECTED
The local replication site has just won an election. A Base API application should call the
DbEnv::rep_start() (page 580) method after receiving this event, to reconfigure the local
environment as a replication master.

Replication Manager applications may safely ignore this event. The Replication Manager
calls DbEnv::rep_start() (page 580) automatically on behalf of the application when
appropriate (resulting in firing of the DB_EVENT_REP_MASTER event).
DB_EVENT_REP_ELECTION_FAILED

Replication Manager tried to run an election to choose a master site, but the election
failed due to lack of timely participation by a sufficient number of other sites. Replication

Manager will automatically retry the election later. This event is for information only.

The DB_EVENT_REP_ELECTION_FAILED event is provided only to applications configured
for the Replication Manager.

DB_EVENT_REP_INIT DONE

The local client site has completed an internal initialization procedure.

2/17/2015

DB C++ API Page 297

Library Version 12.1.6.1

The DbEnv Handle

DB_EVENT_REP_INQUEUE_FULL

Incoming messages will be dropped because the Replication Mananger incoming queue has
reached its maximum threshold.

DB_EVENT_REP_JOIN_FAILURE
The local client site is unable to synchronize with a new master, possibly
because the client has turned off automatic internal initialization by setting the
DB_REP_CONF_AUTOINIT flag to e.

DB_EVENT_REP_LOCAL_SITE_REMOVED

The local site has been removed from the replication group.

The DB_EVENT_REP_LOCAL_SITE_REMOVED event is provided only to applications
configured for the Replication Manager.

DB_EVENT_REP_MASTER

The local site is now the master site of its replication group. It is the application’s
responsibility to begin acting as the master environment.

This event is generated when the replication role changes to master, either from client

or from being unset. The role is unset when an environment is first created and after an
environment is recovered. This event is not generated when restarting replication in an
environment that was previously a master and was opened without recovery.

DB_EVENT_REP_MASTER_FAILURE

A Replication Manager client site has detected the loss of connection to the master site.
If the DB_REPMGR_CONF_ELECTIONS (page 561) configuration parameter is turned on,
Replication Manager will automatically start an election in order to choose a new master.
In this case, this event may be ignored.

When DB_REPMGR_CONF_ELECTIONS is turned off, the application should choose and assign
a new master. Failure to do so means that your replication group has no master, and so it
cannot service write requests.

The DB_EVENT_REP_MASTER_FAILURE event is provided only to applications configured for
the Replication Manager.

DB_EVENT_REP_NEWMASTER
The replication group of which this site is a member has just established a new master;
the local site is not the new master. The event_info parameter points to an integer

containing the environment ID of the new master.

DB_EVENT_REP_PERM_FAILED

2/17/2015

DB C++ API Page 298

Library Version 12.1.6.1 The DbEnv Handle

The Replication Manager did not receive enough acknowledgements (based on the
acknowledgement policy configured with DbEnv::repmgr_set_ack_policy() (page 599))
to ensure a transaction's durability within the replication group. The transaction will be
flushed to the master's local disk storage for durability.

The DB_EVENT_REP_PERM_FAILED event is provided only to applications configured for
the Replication Manager.

« DB_EVENT_REP_SITE_ADDED

A new site has joined the replication group. The event_info parameter points to an
integer containing the environment ID of the new site.

The DB_EVENT_REP_SITE_ADDED event is provided only to applications configured for the
Replication Manager.

« DB_EVENT_REP_SITE_REMOVED

An existing remote site has been removed from the replication group. The event_info
parameter points to an integer containing the environment ID of the site that was
removed.

The DB_EVENT_REP_SITE_REOMVED event is provided only to applications configured for
the Replication Manager.

e DB_EVENT_REP_STARTUPDONE

The replication client has completed startup synchronization and is now processing live
log records received from the master.

o DB_EVENT_WRITE_FAILED
A Berkeley DB write to stable storage failed.
e event_info

The event_info parameter may reference memory which contains additional information
describing an event. By default, event_info is NULL; specific events may pass non-NULL
values, in which case the event will also describe the memory's structure.

Class

DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 299

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::set_errcall()

#include <db_cxx.h>

void DbEnv::set_errcall(void (*db_errcall_fcn)
(const Dbenv *dbenv, const char *errpfx, const char *msg));

When an error occurs in the Berkeley DB library, an exception is thrown or an error return
value is returned by the interface. In some cases, however, the errno value may be
insufficient to completely describe the cause of the error, especially during initial application
debugging.

The DbEnv: :set_errcall() and DbEnv::set_errcall() (page 300) methods are used to
enhance the mechanism for reporting error messages to the application. In some cases, when
an error occurs, Berkeley DB will call db_errcall_fcn with additional error information. It is up
to the db_errcall_fcn function to display the error message in an appropriate manner.

Setting db_errcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DbEnv::set_error_stream() (page 304) and
Db::set_error_stream() (page 108) methods to display the additional information via an output
stream, or the Db::set_errfile() (page 106) or Db::set_errfile() (page 302) methods to display
the additional information via a C library FILE *. You should not mix these approaches.

This error-logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

The DbEnv: :set_errcall() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv: :set_errcall() method may be called at any time during the life of the
application.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_errcall_fcn

The db_errcall_fcn parameter is the application-specified error reporting function. The
function takes three parameters:

e dbenv

The dbenv parameter is the enclosing database environment.

2/17/2015

DB C++ API Page 300

Library Version 12.1.6.1 The DbEnv Handle

e errpfx

The errpfx parameter is the prefix string (as previously set by Db::set_errpfx() (page 109) or
DbEnv::set_errpfx() (page 305)).

o msg
The msg parameter is the error message string.
Class
DbEnv
See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 301

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::set_errfile()

#include <db_cxx.h>

void
DbEnv::set_errfile(FILE *errfile);

When an error occurs in the Berkeley DB library, an exception is thrown or an error return
value is returned by the interface. In some cases, however, the return value may be
insufficient to completely describe the cause of the error especially during initial application
debugging.

The DbEnv: :set_errfile() and Db::set_errfile() (page 106) methods are used to enhance
the mechanism for reporting error messages to the application by setting a C library FILE * to
be used for displaying additional Berkeley DB error messages. In some cases, when an error
occurs, Berkeley DB will output an additional error message to the specified file reference.

Alternatively, you can use the DbEnv::set_error_stream() (page 304) and
Db::set_error_stream() (page 108) methods to display the additional messages via an output
stream, or the DbEnv::set_errcall() (page 300) or Db::set_errcall() (page 104) methods to
capture the additional error information in a way that does not use C library FILE *'s. You
should not mix these approaches.

The error message will consist of the prefix string and a colon (":") (if a prefix string was
previously specified using Db::set_errpfx() (page 109) or DbEnv::set_errpfx() (page 305)), an
error string, and a trailing <newline> character.

The default configuration when applications first create Db or DbEnv handles is as if the
Db::set_errfile() (page 106) or DbEnv: :set_errfile() methods were called with the
standard error output (stderr) specified as the FILE * argument. Applications wanting no
output at all can turn off this default configuration by calling the Db::set_errfile() (page 106)
or DbEnv: :set_errfile() methods with NULL as the FILE * argument. Additionally, explicitly
configuring the error output channel using any of the following methods will also turn off this
default output for the application:

e DbEnv::set_errfile()

» Db::set_errfile() (page 106)

o DbEnv::set_errcall() (page 300)

o Db::set_errcall() (page 104)

o DbEnv::set_error_stream() (page 304)

o Db::set_error_stream() (page 108)

This error logging enhancement does not slow performance or significantly increase

application size, and may be run during normal operation as well as during application
debugging.

2/17/2015

DB C++ API Page 302

Library Version 12.1.6.1 The DbEnv Handle

The DbEnv: :set_errfile() method configures operations performed using the specified
DbEnv handle, not all operations performed on the underlying database environment.

The DbEnv: :set_errfile() method may be called at any time during the life of the
application.

Parameters
errfile

The errfile parameter is a C library FILE * to be used for displaying additional Berkeley DB
error information.

Class
DbEnv
See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 303

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::set_error_stream()

#include <db_cxx.h>

void DbEnv::set_error_stream(class ostream*);

When an error occurs in the Berkeley DB library, an exception is thrown or an errno value is
returned by the interface. In some cases, however, the errno value may be insufficient to
completely describe the cause of the error, especially during initial application debugging.

The DbEnv: :set_error_stream() and Db::set_error_stream() (page 108) methods are used
to enhance the mechanism for reporting error messages to the application by setting the C+

+ ostream used for displaying additional Berkeley DB error messages. In some cases, when an
error occurs, Berkeley DB will output an additional error message to the specified stream.

The error message will consist of the prefix string and a colon (":") (if a prefix string was
previously specified using Db::set_errpfx() (page 109), an error string, and a trailing <newline>
character.

Setting stream to NULL unconfigures the interface.

Alternatively, you can use the DbEnv::set_errfile() (page 302) or Db::set_errfile() (page
106) methods to display the additional information via a C Library FILE *, or the
DbEnv::set_errcall() (page 300) and Db::set_errcall() (page 104) methods to capture the
additional error information in a way that does not use either output streams or C Library
FILE *'s. You should not mix these approaches.

This error-logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

The DbEnv: :set_error_stream() method configures operations performed using
the specified DbEnv handle, not all operations performed on the underlying database
environment.

The DbEnv: :set_error_stream() method may be called at any time during the life of the
application.

Parameters
stream

The stream parameter is the application-specified output stream to be used for additional
error information.

Class

DbEnv

See Also

Database Environments and Related Methods (page 218)

2/17/2015 DB C++ API Page 304

Library Version 12.1.6.1 The DbEnv Handle

DbEnv::set_errpfx()

#include <db_cxx.h>

void
DbEnv: :set_errpfx(const char *errpfx);

Set the prefix string that appears before error messages issued by Berkeley DB.

The Db::set_e