Oracle Berkeley DB

Berkeley DB
API Reference
for C

12c¢ Release 1
Library Version 12.1.6.1

ORACLE
BERKELEY DB






Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at: http://
www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
https://forums.oracle.com/forums/forum.jspa?forum|D=271

Published 2/17/2015



http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
https://forums.oracle.com/forums/forum.jspa?forumID=271

Table of Contents

o] 1= = Lo Pt Xiv
Conventions Used in this BOOK .....cccviiereiiiiieeriitiiiiiiiaeererereaaeeranaeerannarannens XV
FOor More Information .....eeeieiiriit i et e e e e e eeeneeraennesananeaanaens Xvi

1. Introduction to Berkeley DB APIS ....uueeiiiiiiittiiieiiieteeereiieeeeeeeenrneseeeessnnneeeseanns 1

2 2 TS 02 T = T = 2
Database and Related Methods ......ccceiiiieiiiiiiiiiiiiiii e e e ereeeaaees 3
DB->aSSOCTATE() +eveeennueeeerernueeeeeesernueeeeesennnaseesessnsnseseessnnasessesssnnnsessessnnnneess 6
DB->asS0CIate_fOr€IGN() veveeeerrureeeereiieeeeererrneeeeeessaeeeeesessnseseesessnssssessnnnnes 10
D] R of (o Y= ) PPt 13
(DS ole] 1] Y- et o ) HT P PP 16
(o[ elo] o ) A PP 20
(a0 T ol /= U 21
5 R 1= 23
D] R =T o o P PP 26
DB->EXISTS() eveererennuneeeeeenrueeeeeesesaneeeeeennaseeeesennnssssesesnnnssssesssnnsesssessnnnnnes 28
35 R a0 30
DB->GOT() teurueeeeeeenuueeeeeeeenueeeeeessnnnseceesennnsesessssnnasssssssnnnnsssesessnnsssessennnnes 31
DB->get Dt MINKEY () teverreetiiiiiiittieeeiiieeeeeeeiieeeeeesesneeeeesesnsesseesosnnssseeanns 36
DB->get_DyteSWaPPEA() cuvveeeereeriiueeeeerenieeeeeeeesaeeeeeeessnseeeesessnnsnessesennnssaeees 37
DB->get_CaAChESIZE() vivveirntetiiieiiitttteeaiieteereeaineeeeeeesnneeessessnnnsessessnnnneaeens 38
DB->get_Create_dilr() vuveeeereeeieeeeeerenueeeerernueeeereseneneeeessnnnessssssnnasessesannnnes 39
DB->get_ADNAME() teveinetttiieiiiitttieeiiieeeeeeeairaeeeeeesnnneseeeessnnnsessessnnnsessesannnns 40
DB->get_enCrypt_flags() veeeeeeerrueeeereriiueeeeeeenineeeeesersnseeeeressnseseesessnnsssssasnnnnns 41
DB->Et_ @ITTIlE() veveeriitiiiiiiiiittteeeiiieeeeeeenieeeeeeaesnneeeeesesnnsseesessnnsseecsannnnes 42
DB->GEt_ EITPTX() vvtttereiineeeeeeeiineeeeeeseueeeeeeesnnseeeeeessnsssessessnnssssssssnnnnssssenns 43
D] Rl { - T= 1] PPN 44
[D]S R T<) o T i - Tt o] o I P P PP 45
DB->get_ N _NELEMI() tiiieiiiiiiiiiii ittt ieeeitteeeeeeinaeeeeeeennsasessessnnnnessasannnes 46
DB->8Et_NEAPSIZE() vvverrrerinueeeereerineeeeeeeerneeeeeessnaseseesessssessesssnnnseseessnnaneess 47
DB->get_heap_regiONSIZE() cuvveeeeteeeiireeeereeiieeeeeeeernneeeesesesanessesssnnsssssesannnnes 48
DB->et_LK_EXCLUSIVE() tevurrereeieiiiieteeeeeeiieteeeesenueeeeesesnnnseeeesennnssesesennnnnneens 49
DRyl Vo] e [T () I P PPN 50
DB->8et_MSGIILE() uvreerreriineteereeiieteeeeeerneeeeeeesrnueeeesessnnsnessessnnaseesessnnnneseees 51
DB->get._ MULLIPLE() teveeinetetieiiiittteeiiieeeeeeennneeeeeesenneeesessnnnesessessnnnssssesanns 52
DB->get_OPEN_flags() veeeeerruereereriiieeeeeeeerueeeeeeesnnaseeeessnnseseesensssessesennnnaesens 53
DB->get_partition_Callback() «veeeeeeriirerieiiiiiieeiiiiiireeeeenieeeeerennnneeeeseennneneens 54
DB->get_partitioN_dirS() «eveeeeeeeeerreeeeeeeeiiueeeeeeerreeeeeesesnnneseesessnnessessesnnnsaseens 55
DB->get_partitioN_KEYS() teeeueeeteeeriieeeeierniereeeeserueeeeeeessnneeeseessnnesessessnnnneess 56
DB->8Et_PAZESIZE() vvvverrrrrrrerreererrerresseeseeeeeesesesssssssssnssnsnsnnnnsnsnnssnnsnnnnnnnanes 57
(DS To )l o] o (o] 10/ (I PP 58
DB->get__@XEENESTZE() teveirrtrtiiieiieteeeeeiieeeeeeeenrneeeeesessneeeeesssnnansessessnnaneess 59
DB->get_re_delIM() veveereriietetieeiiieteeeeeeineeeeeesrnueeeeeessnnnnessessnnnsessessnnnnsssees 60
D]l T (=) 1 | PP 61
DB->Et_IE_PA() +eeeeerrureeeeeeiiueeeeeereneeeeeeeesaeesesessnssseseessssnsessessnnsssssesannnns 62
DB->GEt_IE_SOUIMCE() vuuveeeereeeuueeeeeeessuueeeeeessnnssesesssassssesessnsssessessnnnssssssnnnes 63
DB->GET TYPE() eveererennuneeeeeenueeeeeeeenneeecessesnasesssessnnsssseessnsnssssessnnnssssesannnes 64

2/17/2015

DB C API Page iii



DB->JOTN() teentintitiitiitiiti i e 65

DB->KEY_TANGE() +eerrteeneerenueeeenueeesneeeenneeeenseeesnseeesnseesnsssesnsssssnneesnnssesnseens 68
DB->0PEN() teuueeterrenanteeeeennneeesseesansesseessanneessesssansesssessannssssesssnnsessssnsnnns 70
DB->PUL() eveereeennnneeereennateeeeeesaneeeseesnanessssessansesssesssansesssessansasssesssannesss 75
DB->TEIMOVE() tuvvrrrnreetetteeteeeeeeeeeeeeeeeeeeeeeeeeseeseesessesessssssssssssnnsnnnnsnssnssnsnnes 79
D2 R T =13 1 1= O e 81
3] Yy M- 1{ (o Yo [ TR PP 83
DB->Set_apPend_IECN0() ueeereueererueereneteenneeeeneeeeseeeesneeeennsessnseessnessonasessneens 85
DB->Set_Dt_COMPAIE() uveeernttieintiiiittientereiterereteeaneerereeeesneeeesneerenaeeesneesanns 87
DB->Set_Dt_COMPIESS() uveeennterereteeneteennteeenueeeseeeesneeeenaseesnseeesneeesnnseesnnaenns 89
DB->Set_Dt_MINKEY() uetirieiiiitiiiitiiiittieitereeeeerneerereeeesneeeenaeeesneeeesneeesnnees 92
DB->Set_ Dt _PrefiX() teveeereretiiiiiiiiiiiieitereieteereerenaeereneeeasneeeenneessneeesnneens 93
D] By Wl oF- Tl g 1T 4= [ I PN 95
D] R Y i o (=T LT« o P 97
DB->Set_dUP_COMPAE() teuueererneererueeeeneeeenueeeeneeeesneesesaeesoneeeesassesnnesssnesesnnes 98
DB->SEt_ENCIYPL() evrttrreettetreerianteertenraneeesseesaneesseesansesssessanneessesssnnsesss 100
B3 Ry Y A =T o o | LY T PN 101
D] Yy M =T o o | U= T PPN 103
DB->SEE_EITPIX() vuverennteeeneteenneerenueerereeeesneeresaeeesneeeesneesesnseesnsssesnessennssennes 105
DB->Set_fEEADACK() terrrrttiiiiiit ittt it ettt teeaiteeeeeeeansaeeeeeeainsseseeennns 106
DB->SEE_flagS() veveeeeeneerenueereneeeenneerenueeesneeresneereraeeesneesesneesennseesnessenneeeones 108
DB->Set_N_COMPArE() «eeieretiriietiiittieieteeeeteeneeereneeeerneeeesaeessneeessneeesnneesnnes 114
(D] Yyl T - Ut o o T 116
DB->Set_ N _Nash() cevviiiiiiiiiiiiiiii i it et et e et aaas 117
D] Yyl o T = =T .o 1 T PPN 118
DB->SEt_NE@APSTZE() +eerernteernetieittrereteeareeeeaeeeenateeaeeeesneeeenneeesneesesneeeenneennn 119
DB->set_heap_regionNSiZE() tevueeeeretieritererteeeieeeeneeeenneeeeneeeesneeeesnseesnaesesneeens 121
DB->SEt_LK_EXCLUSTVE() tenrrrtetiieiiitetetieiiiitteeteeaiieeeeeteaainseeesesasnsseseeennnnseaeenn 122
B3 Yy Ml Vo] e [T o T PP 124
DB->SEt_MSZGCALL() tuuvteeeneereinteeeinteeieeeeaneeeeiaeeeaeeeesneeesnaeeesnneessneeesnnesesnnees 125
DB->SEt_MSGFIlE() tuverentireinteriietieitereieteeeieerennteeaneeeasneesesneeeennneesneesennneens 127
DB->SEt_PAZESTZE() tevernnneerreennnneererennaneeessessaneesssessansesssesssnssesssessansesssenss 128
DB->S@t_PArtitionN() ceeeeereeeeeernnneeererernnneeeeeenanneeesesesaneeessessnnseesssessansesssanns 129
DB->set_partitionN_dilrS() «eeeeeerereeerereererneereneeeeseeeenueerenaeeesneesesneeesnaseesneseanns 131
DB->SEt_PriOFTEY() evveeererrnnterrerennneeeeeesnneessesasnnsessesesnnnesssesssnnsessesssnnnesss 132
DB->Set_q_@XEENESIZE() teurunrterriiiiitetiieiiitetteeaianeeeereeranntesseeannnesssessnnsesses 133
DB->SEt_ € _AELIM() 4eittiiiiiiittt ittt iieeii et teeeiteeeeteeanraaeeeeeannseeseeennnnneens 134
3] R Y Ml T (=1 Y N 135
DB->SEt_I€_PAG() +everrterenetrenneerenueeenneeeenaeeeseeeesneeeesasessneesssnsessnnsessnesesnnes 136
D] B Ll Y010 o= (P 137
DB->SOrt_MULEIPLE() teuveerenntierntteeitereieteeaeeeenneeraneeeenneeeenneeesnneeesnessennaeennes 139
DB->STAL() vveerenueeenneerenneereneeeenneereraeeesneeeesueeeennsessneeeennesssnsesssnesssnnsesonnens 141
DB->Stat_PriNT() veeeeeeenreereeenineeerreeraneeeereesnaneeeseessansesssessannsessesssansassecnas 149
DB->SYNC() +eeennnnrereeeannneeeeeasnneessessnnnessessssnnesssesssnnsessesssnnsessesssansassssnes 150
D] R U g Vot Y =T P PPPP 152
DB->UPZGIadE() +eeeuueerenuteeaneeeenueeeenueeesneeeesneeeennseesnsesesnnsesnnseesnsssesnssesnnssnns 154
DB ->VEII Y () etrenetiennetieneeeraeeeenneereneeeeaneeresaeeeonneeesneesosasessnseessnnessnassennees 156
DB_HEAP_RID .ieuttiiittieittieieteeeeeeaaneeeenaeeeaneesesneesenaseesneesesnsssonaseesnnesanns 159
T I o TR 02 Tl Yo gl - T Ve | (N 160

2/17/2015 DB C API Page iv



Database Cursors and Related Methods ......vvuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiieees 161

B> CUISOI () veeeeteitetteeeteeieeeeeeeeeeeeeeeseeeeeeesessnnnnnnnnssssssssssssssssssssssssssssaees 162
DBCUISOr=>ClOSE() teuuuureeeteneineeeeeeeniueeeeeeeesaseeeeeessnsseseeessnssseeesensnnsesesennnns 164
DBCUISOr=>CIMP() eeereteeeennnneesseeennneesseeesnnnesssesssnnsessesssnnsassssassnnasssssssnnsessss 165
DBCUISOr=->COUNT() uuuureuuueeeneeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeseesssssssssssssssannnnns 166
B3 Tl [ Yo e 1= U T PPN 167
DBCUISOT=>AUP() veeennueeenneerenueeeaneeeenneesenaeeesnseeesneesesaseesnsssesnssssnnseesnnssannes 169
DBCUISOr=>GEE() veernnunreereennneeereennneeeeeeasanneessessnnnsessesssnnnesssesssnnsessessnnnnes 171
DBCUIrSOr=->get_PriOrity () ceeeeeeeeeeeesrneeereeesneeeeeeensaneeessessnaneessssssansesssassnnnaes 179
DBCUISOr=>PUL() uueeerreennnnteereenaneeeseenanneessessanneessesssansessesssansasssessannasssenss 180
D] (8] o] C =] il o] (o] 1 Y/ { PPN 184
4. The DBT Handle .uviiiiuiiiitiiiiitiiiteeitteeeeeeeaneeeenaeeesneeeesneeesnneeesnnssssnesesnnees 185
DBT and Bulk Operations ....ccueeieieterrieeiereereneeeenneereraeeseneeeesneeeonaeessneeeennees 189
DB _MULT IPLE _INIT 1etetiiietiiitteereteeeeerenaeeeanaeeenneeeenaeessnesesnneessnnsessneesennens 190
DB _MULT I PLE _NEXT \ttiittteeinteeeueeenneeeenneeeenaeeesneesssnneesaesesnassssneeessnesesnnees 191
DB_MULTIPLE_KEY _NEXT tttiuttteeuteeeiuteeaeeeeaneeeenneeesnnesesnessssnseesnnesesnnesannaens 192
DB_MULTIPLE_RECNO _NEXT +tiuuttieuteanneeeenneeraneeeeaneerenneeessseeesnessesnsessnaesanns 194
DB_MULTIPLE _WRITE _INIT uttiiittiiitteiieteeeeeeennteeaneeeenneeeesneeeenneeesneesanneeenns 195
DB_MULTIPLE _WRITE _NEXT ttuuttiiittianueeeeneeeenneerenaeeeaneesesneesennssesnsesesneesannes 196
DB_MULTIPLE _RESERVE _NEXT 1tuuutieittteeneeeenneeeenueeeseeeesneeesnneeesnnssesneeesnneens 197
DB_MULTIPLE_KEY _WRITE _NEXT 1.ttiittiitiiitiitiiiteiitetiteeneeeneeenaeneesneeeaeanaenns 198
DB_MULTIPLE_KEY _RESERVE _NEXT ..iiuttiittiiteiitirieeaiteniteneeneeaseresesnsesnaeenaenns 199
DB_MULTIPLE_RECNO _WRITE _INIT uttiitiiitiiitiiiteiteniteniteeieeeieeaeeaneeaneenseennenn 200
DB_MULTIPLE_RECNO _WRITE _NEXT .tiutiiitiiitenteaiteateanteaseenseeaserssesnseenaeanaens 201
DB_MULTIPLE_RECNO _RESERVE _NEXT .iiutiiitiiiteiiteiitenitenieeeneeeneeenaesieesneeeneennas 202
5. The DB_ENV Handle ..iiiniiiiiiiiiitieiiiiiiteeitteeeneeeenneeeanaeeesneesesnseesnnssennneens 203
Database Environments and Related Methods .......c.eviiiiiiiiiiiiiiiiiiiiiiiiiiieeeenn, 204
DB_ENV->add_data_dilr() «eveeeeeneererueernieeeeneereneeeeeeeeesneerenaeessneesesnessonneeennes 206
DB_ENV->DaCKUP() “eteeuueeranuteeaneeeenneeeenueeeaeeeesneeeesaseesaeessnseeesnssesnsssenneeens 208
DB_ENV->ClOSE() teuurrtetteeeiiuteeteeenaeeeeteeesiuseeeeeessnseseseessnnssssesesssssssesennnnnees 211
oo = 0 A ol (=T L - R PP PRSP 213
DB_ENV->dbbaCKUP() teeuuteeenttinitteeiutieeieteeiieeeenneeeeneeeesneeessneeessnseesneseanneens 214
DB_ENV->ADIreMOVE() teunrtettiieiiitteieieiiteeteeetieeeeeeenannseeseesssseseesessnsesseeanns 216
DB_ENV->AbreNameE() veeeeieeiinetttieiiiietetieeaiieeeteeeaieeeeeesesseeeseesssnsesssesennnnes 218
D N =y o PPN 220
DB_ENV->failChK() tuueeeeinteeretienieteeiteeeieeeeaieeeenneeesiaeeesneeessneeessaseesnassesnnens 222
DB_ENV->fil@id_rESET() veeeeerirntetieiiiietiiieiiieeeetteeiieeeeteeasinseseeeensnnseeeeennnnnes 224
oo 3 (V| LY =151 o] o H PP PPN 226
DB_ENV->get_Create_dir() «eeeeeeeereeeerieeeeneeeeiueeesieeeeseeesnneeeonaeessneeessnesesnnees 227
DB_ENV->get_data_dirS() «eeveeeeeeererutereneeeeneeeenneeesneeeesneeeesnseesnaesesnssesnneeens 228
DB_ENV->get_data_leN() eeeeereererneieneeeeneeeeiueeesieeeeseeeesneeesnaesesnaeessnesesnnees 229
DB_ENV->get_encrypt_flags() «eeeeeeeerereeienieeieieeernneeienueereneeeesneeeenaeesoneeesnneens 230
DB->GOt BNV() teteiinitttteieiineeteeeraneeeeeeannneesssessnnnessssessnnsesssassnnnssssessnanes 231
DB_ENV->8et_ITIle() teevutierttinitteeitieeieteeaieeeeineeeenaeeesneeessnecesnaeeesneeennnees 232
DB_ENV->GEt_EITPIX() +eeeeueerenueeraneeeenueerenueeesneeeesneesesaseesnsesesneesennseesnsssannes 233
DB_ENV->get_backup_CallDacks() «ueeeeeerereereieeernietiereerereeersneeeesneesenaeeennees 234
DB_ENV->get_backup_CONfig() ueeeerrttreiutierieiieieereieteeneereneeerenaeeesneerennseennes 235
DB_ENV->8Et_flagS() veeeeueererueereneteenneereneeereneeessneereraeessneeeesnessonassssnesesnnees 236
DB_ENV->8Et_NOME() +eieruttiiintirietientereneeeeneeeeraeeeeeeeesneseerneessneeeenneseonnens 237

2/17/2015 DB C API Page v



DB_ENV->get_intermediate_dir_mode() ....eeeeeierieiriieeiriieererneereneeeeneerenaeeennes 238

DB_ENV->get_memory_init() .eeeeeererinreeirieiineeerreinnaneeeeeennaneeessessnneesseannanes 239
DB_ENV->get_MemOry_MaX() «eeeeeeueeeereeannnneeereensnneeesseesaneesssessansesssessnnnassss 241
DB_ENV->get_metadata_dir() «ceceeeeeereneeienieeieieeeenneereneeeeereeeesneeesnaeesoneeeennees 242
DB_ENV->8et_MSGFIlE() vererrttrerntiiiietiniittieiteeiieeeeneerenaeeesneeresneerenneeesneesanns 243
DB_ENV->get_Open_flagS() ueeeeeeeerereteerieerenueereneeeeseerenaeeesaeeesneeeesnseesnsseanns 244
DB_ENV->8et_ShIM_KEY() cuueerrnttiiitiiiitiniietieitereneteeneereneeeesneeessneesonaseannees 245
DB_ENV->get_thread_count() «.ooveeieieiiriieiiiitiieitieeieeeeieeeeneeeeeneeeenneeeenneenns 246
DB_ENV->8et_tiMEOUL() teverrurrierreiritteereiiianeeereearnneesreessannesseessanneessessnnnnes 247
DB_ENV->get_tMP_dir() cueeeeueeeeueieiuteeeiueeeeieeeenneeesieeeesneesesneeessneeesnnseesnnens 248
DB_ENV->GEt_VEIDOSE() tuveereretrenneererueereneeeesueeeereeeesneeeesneeeonasessneeesnnsseonaees 249
DB_ENV->10Z_VEIIfY() veeeruttrenutineietieneereneeeeaeeeesaeesenaeeesnesessasssoneessnnesesnnens 251
B I o N AT Y o T (Y= PN 254
DB_ENV->0PEN() teuuuurtttreenneterrennnareeeseessanneessessannsessesssansesssessannsassessnnnnes 256
DB _ENV->TmMOVE() teetettiiiitiittietieeteeeeeeeeeeeeeeeeeeeeseeesessssssnssssssssssssssssssenes 262
B I o N AT - | { Vo o T 264
DB_ENV->set_app_diSPatCh() «eeeeueeereeiiriutiriitieitteeieteerneeresneeeenneeesnaeeanneeees 266
DB_ENV->set_backup_CallDacks() .ueeeeueeiereeiereeereieteeneerereeeeseceenaeeeoneeeanneens 268
DB_ENV->set_backup_CONfig() ..eeeeertiieietienietriieereieteeneerenneeesneeeesneerenneeennes 271
DB_ENV->Set_data_dir() «veeeeeeeiietetieiiiiietiieeiiieetieeeiieeeeeeessnsseeeeeessnseseeeanns 273
DB_ENV->Set_data_lEN() teveeirrtttiiiiiiietiiiiiiieeteeiiieeeeeeenineeeeeenensseseennnnnes 275
DB_ENV->Set_Create_dir() voveeeeeeiereiieeteeeeiiiteeeteeeiieeeeeeeessseeeeeensnsseesesnnnnes 276
DB_ENV->S@t_@NCIYPL() ceuueterreerintterienianeeerreenaneeessesssnnsesseessnnsesssessannaassenns 278
DB_ENV->set_eVent_NOTITY() coeeierrtireietiriieiiiiteriietieneereneeeanneeeesaeesonaeesnneens 280
DB_ENV->Set_@ITCaLl() turveetieeiiitttiiiiiiitteiiiieteteeeaieeeeeeenaiaeeeseeennnsseeeeenns 286
B I o N N =Y o o 1 =T PP 288
DB_ENV->SEt_ITPIX() +eeeruterenutereneteenueereneeeesneeeesneerenaeeesnsesesnsssonnseesnsesannes 290
DB_ENV->Set_feeADACK() tvetrrrttttiiiiiitetiiiiiieeteeeiiieeeeteeaiieeeeeeenssnsessseennnnees 291
DB_ENV->SEt_flagS() veeerueererueerereeeerueerereeerereeeesneeronaeeesneeessasesonasessneseonaees 293
DB_ENV->set_intermediate_dir_mode() ...cceeiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiiieeeeeeanns 300
DB_ENV->SEt_iSAlIVE() uvvettreniinetetiiieiiteeteeanieeeeeeeeiineeeeeeessnssseseesnnssssseeanns 302
DB_ENV->set_memory_init() .veeeeeerireeireiiiietieiiiitetreeannnneesseesnneessesannnnenss 304
DB_ENV->Set_MemOry_MaX() «eeeeeeereereeennneereeesanneessesesnnnessesssnnesssessannsessenns 306
DB_ENV->set_metadata_dir() «coveeeeeeeeiiieeiiieiiiieeeteieaiieeeeerennineeeeeeeesnsseeeeenns 308
DB_ENV->S€t_MSZGCALL() “vveeretrenneereruteereerenneeeenneeesneeeesneeeenneeesnseeesnneesnneenns 309
DB_ENV->Set_MSGFIlE() veeerrttiiintiriitiiiittieiteeeieteereereneeeesneerenneerenneeesneesanns 311
DB_ENV->Set_ShIM_KEY() cuveereetiiitiiiitiniitiaiteeaneteeneereneeeesnecessneeeonneeannees 312
DB_ENV->set_thread_COUNT() «iveeiieettiiiiiiiiiiiiietieiaiieeeteeananeeeeeennnnseseeenns 314
DB_ENV->set_thread_id() «eeeeeeriieetiiiiiietieieiiieetteeiiieeeeteeeisseeeeeensnseseeeanns 316
DB_ENV->set_thread_id_String() «.ceeeeeerreeieiietieitiriietieiieereneeeenneeeenneerenaeeennes 318
DB_ENV->Set_tiMEOUL() 1uuuururruuneeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeesssssssssesaennns 320
DB_ENV->Set_TMP_dir() veeeeerueeerneeeenneieenueeeaieeeenneeesnueeesneesssneeesnneeessaeesonaees 323
DB_ENV->SEE_VEIDOSE() +ettereinteettteniieeeeteeaiiseeeteesessseeeeeessnsesesesesnssesseennns 325
DB_ENV->STat_Print() «ueeeeeereennneetrreernneeeerenraneeesrensnaneesssessaneeessessnnsessecnes 328
(oo T W =T o] A PP PO 329
oo =] 551 o] o H P PO PP PPN 330
6. The DB_LOCK Handle ....ciiieiiiiiiiiiiitiiiiitiiitieitereneteerneerenneerenaeessneesennneeanes 331
Locking Subsystem and Related Methods .......ccceiiiieiiiiiiiiiiiiiiiiiiiiiiieiieenaneens 332
DB_ENV->get_K_CONTUCES() tevereererntiriietieiietiiieeeaieeeenneereneeeesneeeenaeeeonaeennnees 333

2/17/2015 DB C API Page vi



DB_ENV->get_IK_dELECL() tevrrrrerntiraintienietteneeeenuteenneeeesneeesnneeesnseeesnesesnnneans 334

DB_ENV->get_[K_mMaX_LOCKEIS() «eeeueteerutireietieiieeeaieereineeenreeeenneeesnaeeesneeennnees 335
DB_ENV->get_[K_MaX_LOCKS() «veeerrreernueeereeeeieeeenueeesreeeesneeesnneeesnaeeesneeesnneens 336
DB_ENV->get_K_mMaX_0DbJeCES() «vererrtireretieiitiieitireietienieerenneeeeneeeesneerennseennes 337
DB_ENV->get_K_PartitionS() «.eeeveeeeeeeeerueeeeieeeenneeeenneeesneeeesneeeesnseesnaesenneeens 338
DB_ENV->get_IK_Priority() «eeeueeeerueeerneeeeneeeeiueeesieeeesneeessneeessneessnaeessneeesnnees 339
DB_ENV->get_K_tableSiZe() «uveeetiertiriiiiiiitieiieieeiteeeieeeenneeeenaeeeseeeennneenns 340
DB_ENV->Set_LK_CONTUICES() tvveeinnteeiiiiiiiiiiiiiiieeeieiiieeeetenaieeeeeeennnseeeeanns 341
DB_ENV->Set_LK_AELECE() vurreeerieniiieteieieiiieeeteeiiieeeeeeeaieeeeeeessnsseeeeensnnnaeens 343
DB_ENV->set_LK_MaX_LOCKEIS() veetirriiinetetieiiiieeeeieeaiieeeeeeanineeeeeeeesssseeseennnnns 345
DB_ENV->Set_LK_MaX_LOCKS() +veetererinneeetiiiiieeeetieiieeeeeenaineeeeeeessnseeeesenannnaes 347
DB_ENV->set_K_MaX_0DbJeCES() «veeerrtirretirittieitereieeeeneerenneeesneeeenneerenaeeennes 349
DB_ENV->set_K_PartitionS() «eeeeueeeeeneeeereeeeereeeeseeeerueeeeneeeesneeeennseesnsssennneenns 351
DB_ENV->Set_IK_PriOrity() «eeeueeeeneeeeeieeeenneeeenueeeereeeesneeesnneeesnaseesnseessnesesnnees 353
DB_ENV->set_LK_tableSiZE() vevvveiiiiiiiiiiiiiiiiiiiiiit ettt teeiieeeeeeeniaaeaennn 354
DB_ENV->10CK_AELECE() vurrrreeieniiietttiieaiiteeeieaiieeeeeeeainseeseesasnsseeeeensnseeeeenns 356
DB_ENV->10CK _GET() tuvetreintiriietiiittiereterenetrenneereneeeesneeeesneessnaeessneeesnnsennnes 358
DB_ENV->L0CK _Td() vuveeenteeautenneeeeiteeaieeeenneeeesneeesnueeesneesesneeessnesessasssanaees 361
DB_ENV->10CK_id_fIrEE() turreetitiiiiittiiiiiiitetteeiiieeteteaaineeeeeeesinsseeeeennnssaeeenn 362
DB_ENV->L0CK _PUL() weereneerernetreneteraetrenneetereeeesneeeesaeeseneeessnesessasessnnsesnneens 363
DB_ENV->10CK_STAL() veeurrreetieeninetetieiiiiteeteeaiieeeeeeenineeeeeesesnseeseesesnnseseeennns 364
DB_ENV->10CK_Stat_Print() cueeeeeueeeerneeerrueeesreerenneeeenueeeseeeesneeeesneeesnsesennneenns 370
DB_ENV->10CK_VEC() teunrteetieaniueeetteeaiieeetteeaiieeeseeeesssseseesssnssessesessnseseeennns 372
7. The DB_LSN Handle ..ciuiiiiiiiiiitieiitieiteeeinteeeeeeeaneeeenneeesnsesesneeeennesesnnesns 376
Logging Subsystem and Related Methods .......ccceiiiiiiiiiiiiiiiiiiiiiiiiii e e, 377
DB_ENV->8et_ G DSIZE() teeurtirrnttieiutinnetientereneteeaeerenaeereraeeesneesenneeesnaesannes 378
DB_ENV->8Et G diN() veverutereieeieinetiereeeeaeeiereeereneeeesneeeenaeessnasessneseonassesneens 379
DB_ENV->get_[g_filemOde() .veeeereirriiiriietieiieeeiieeeeieeeeaneeeenneeeenaeeesneeennneens 380
DB_ENV->8Et_[Q MaAX() teuvtrenterenueeerneeeenneeeenueeesreeessnneesnnesesnaesssneeessnesesnness 381
DB_ENV->get_[g regionmMaX() «eueeeeeeeeeereeeereerenneereneeeesneesesneeesnsssesneesennaeennes 382
DB_ENV->10Z_arChiVe() uueeeereteeiuteriiutieeneeeeneeeenueeesneeeesneesennseessaesssnneesnneens 383
DB_ENV->10Z_CUISOI() +ereuuterenuerenneerenueeeaneeeesaeeesnaeessneseesasessnassssnssssnnssennees 386
DB_ENV->108_filE() tevuetrenntererutieneerenneeraneeeesneerenaeeesnaeeesneesesnseesnsssssnessanns 387
DB_ENV->108_flUSN() teeuuteeiittieittiiitieeiteeeieeeenuteeaneeeeaneeesnneeesnneeesnseeennneens 388
DB_ENV->10g_et_CONFIG() veereruterruutrenueerereeeeneererneeeeseeeesneeeesneesonaseesnessannes 389
DB_ENV->108_ PriNtf() teeeueeeeiuteenieeieiutieeieeeesieeeesneeesnaeeeseeessneeessaeeesnnssennnens 391
DB_ENV->10Z _PUL() +eveuuteenneerenneeeeneeeesneeeenneeeenaeeesneeeesnseesnsesesnsesesnssssnsssenns 392
DB_ENV->10g_SEt_CONTIG() +eererueerruetrerueereneeeenneeeenueereseeeesneerenneeesnseeesneesannes 394
DB_ENV->10Z_STAT() vveeenuteerneerenueeeenueeesneeeesneeesnneeesnaeeenneeessnseesnnssssneesennees 398
DB_ENV->10g_Stat_Print() «eeeeeeeerereterreerenneereneeeenneeeenaeeeeneeeesneesonasessneesannees 402
DB_ENV->SEt_Q _DSIZE() teeurtrrinttraintieneerenneteeneeeeaneeresaeeeesaeeesneesennseesnnsennnes 403
DB_ENV->SEt_IQ_ diN() vevereterereeieieiienetenaeereneeeeaneeeesneeeesaseeoneeeesneesonnesenneens 405
DB_ENV->set_[g_filemMOde() ..veeeerrirrietieiietieiteeaieteeeieeeenneeeeneeeesneeessneeeanneenns 407
DB_ENV->SEt_[Q MaAX() teuvteennteeenueeerneeeenueeeenueeeseeessneeesnaesesasessnneessnesesnnees 408
DB_ENV->Set_[g_regionmMaX() «eueeeereeerereeeerneerereeeeseeeesaeeeeneeessneeessasessnneesnnes 410
The DB_LOGC Handle ...cciieiiiiiiiiiiiiii i aieeeeieeeeeneeeanneeeenaeesaneeeennees 412
DB_LOGEC->ClOSE() +eeeennnrreeerennineeeeteraieeeeeesessseseeeesnssesesesssnssessesssnsseseeennns 413
DB_LOGC->ZEE() vvverenueeenneerenueeeenaeeesneesenaeeeenseeesnsesesaseesnsssssnsssesnseesnnsssnnes 414
Co)e B ele]10] -1 I PP 416

2/17/2015

DB C API Page vii



8. The DB_MPOOLFILE Handle .........cccviiiiiiiiiiiiiiiiiiiiiiiiiiinnnn e 417

Memory Pools and Related Methods .....cc.veeeiiiriiiiiiiiiiiiiiiieiiieiieeeieeenneeenns 418
D) e (Ll 1010 { PP 420
DB_ENV->get_CaCh@_MaX() veeeereteerueerenneerenueeesneeeenneeesnaeeesnaeessnneesnnssesnasenns 421
DB_ENV->8et_CACNESIZE() tvvererutrennttrennterereteeneerenneereneeeesneerennseeonseeesneesannes 422
DB_ENV->get_mp_max_openfd() «.eeeeereerieeiieeinteinteiniiitiitiieraeiaeeiieeeneecnnenns 423
DB_ENV->get_mMp_MaX_WIITE() teeeruurttrriirianreerienianeeerrersanneesseessansesssessanneesses 424
DB_ENV->get_MpP_MMAaPSIZE() +eeeruureerrerrnnterreennneeerressanneessesssansesssessannaesses 425
DB_ENV->get_mp_MEXCOUNT() nuueeiirririitiiiieiiatterieeraneeeerennnneeesseesnaneesseannas 426
DB_ENV->get_MP_PABESIZE() «vveerrerrnurterreennneeeseeeranneesseeesnnesssessannsessessnnnnes 427
DB_ENV->get_mp_tableSiZE() «veeeertterintireietteiieeeeieeerieeeeeeeesnneeesnaeeesnesesnneens 428
DB_ENV->mMempP_fCreate() vueeeeeeierreereretirnietieneereneeeesneeeerasesseeessneeeonaseannees 429
DB_ENV->mMempP_re@ISTEI() «eveeenunrtetrrennneeerreesnaneeeseessaneeessessassesssessansasssanss 430
DB_ENV->MeMP_STAT() tevuureerrrerinteirreiiitteteeanianeeesreasaneeessessnaneesssennannaases 432
DB_ENV->memp_stat_pPrint() «.ceeeeereireiiiiiiietiiiiintetreeananeeesseessnneessesannnnenss 438
DB_ENV->MEMP_SYNC() +eeeennnretereannnureeeeeaananeesssessaneasssesssansesssessansasssessnnnaes 439
DB_ENV->MemMP_triCKIE() uveeerneeierntiriieterietreneteeaneeeesneerenaeeesneesesneesennseennes 440
DB_ENV->Set_CaCh@_IMAX() +tettreeiinneetieiiiiteeeteeaiieeeeteenernseeeresannsseeeeenssnneaeenn 441
DB_ENV->Set_CaChESIZE() vetvreiiitttitieiiiitetieiiiieeteeeiieeeeetenaseeeesensnsssseennnns 443
DB_ENV->set_mp_maX_0PeNnfd() ...eeeereeeereteereerenneeeeneeeeseeeesneeeenaeeesnseesnneeens 445
DB_ENV->Set_MpP_MaX_WIIEE() teeeruurterrerrinteerierineeerreesnneeesseesnansesseensannaesses 446
DB_ENV->Set_MpP_MMAPSIZE() +euvrererrrrenaneerreannnneeeseeessareesseessanessssossansasssanes 448
DB_ENV->set_mp_MEXCOUNT() uuureerrreriietereiiiiateeteeanraneeeeresaneeessessnnnessseannns 450
DB_ENV->Set_MP_PABESIZE() «vvterrerunrrerreerinreersearanneesseessansesssessanneesseassnnnes 451
DB_ENV->set_mMpP_tableSiZE() «veeeerrerriutierieeeeneeeeiueeesieeeeseeeesneeesnaeessnesesnneens 452
DB_MPOOLFILE->CLOSE() +eeeuuteeenueeenueeeanueeeaneeeesneeeesneeesaesesnseeesnssesnassasnnaenns 453
DB_MPOOLFILE->GEE() vveeenuteranueeenueerenueeeaneeeesneeeesneeesssseesnseessnsessnsssesnaeenns 454
DB_MPOOLFILE->0PEN() +tteuutttenueeeanueeeaneeeesueeesnaseesneeeesnseesssseesnsssssnseesnassans 457
DB_MPOOLFILE->PUL() +eeuuetrenueereueeenneereneeereneeeesneesenasessnseeesassssnnsessnessenaess 459
DB_MPOOLFILE->SYNC() +vteeenuteeanueeasueeeenneeesnaeeeseeessnneessassesnassssnesessnesesnnees 461
DB_MPOOLFILE->get_clear_Len() «ieeeeeiereeireietieieereneeeniieereiaeereneeessneeeonnsennnees 462
DB_MPOOLFILE->Zet_fileid() +evevreereretrerieererueeerneeeeneerereeeesneeeesneerenaseesneaeanns 463
DB_MPOOLFILE->ZET_flags() «eueeeereeeerueeeeeeeenueeeenueeesneeeeseeessneeesnasssonesesnnees 464
DB_MPOOLFILE->ZEEt_ftYPE() «vveeereteenueerenueeeeeeeenneeeesneeesneeeesneeeesnseesnassennseens 465
DB_MPOOLFILE->ZEt_LSN_OffSET() vuveeerrreerieeeerieerenueeesieeeesreeeenneeessaeeesnnesanneens 466
DB_MPOOLFILE->Zt_MAaXSIZE() +evrerernureererannnneeersesssaneesssessaneesssessansesseessnnns 467
DB_MPOOLFILE->Zet_PGCOOKIE() teuuterrnetrenneerereeeeareeeeneeeeeneeessneeeesasessnaeeennees 468
DB_MPOOLFILE->ZEt_PriOrity() eeeeeeereeesuneeereersaneeereeesanneessessanneesseessansesseennes 469
DB_MPOOLFILE->Set_Clear_leN() .veeeiieeiiietetiiiiiieeieiiiieeeeteeeiineeeeeeensnseeeeenns 470
DB_MPOOLFILE->Set_fileid() veverueerereteeneerereeeerneeeenneerenaeeeseeresneerenaseesneesanns 471
DB_MPOOLFILE->SET_flagS() «veeeerueeeenueeeeneeeenueeeenueeesnaeessneeesnneeesnasessnesesnneens 473
DB_MPOOLFILE->SEE_fLYPE() vveeeneeeenueerenueeeeneeeenneeeenueeesneesesneeeennseesnnssasneeens 475
DB_MPOOLFILE->Set_ISN_OffSEL() teeerireretiiiiiiiiiiiiiieiiiieeeeeeeiieeeeeeannnnees 476
DB_MPOOLFILE->SEt_MAXSIZE() uuuuruuruunuuneneeeeeeeeeeeeeeeseeeseeeeeeeeeseeeeeeeeeeeeeeeeens 477
DB_MPOOLFILE->Set_PGCOOKIE() teeuuetrrnetrenneerereeeenneeeenneereneeeesneeeesneessnaeeanness 478
DB_MPOOLFILE->SEt_Priority() eeeeeeeeeeraueeerreesnanneeseensaneeessessannsessesssansesseenas 479
9. MULEX MEENOAS  .eiiitiiiit it ii e e e et eeieeeeeneeeanneeeanaesesneeeennneesnnnennn 481
MUEEX METNOMAS ..ueiiniiiii i e e e e ettt eeieeeesneerenneeeanaesenneesannsennnes 482
DB_ENV->MUEEX_AllOC() tenrrettiiiiiitttiiiiiiieeeteeaiiteeteeeaieeeeeeensnsseeesennnsseenns 483

2/17/2015 DB C API Page viii



DB_ENV->MUEEX _fIrEE() turertetieiiittettieiiiteteteaiieeeeeteraineseeeeessnseeeeeessnsseseeanns 485

DB_ENV->mutex_get_aligN() «cueeeereeirrreeieneeerereeeeneeeeneeeeoneeessneeessasessnesesnneens 486
DB_ENV->mutex_get_iNCrement() «..eeeeeereeeeirreriaeterreraneeeerseesnaneesssessannesssanss 487
DB_ENV->muteX_get_TNTT() teverrunrriirierinetirieiiirteereearaneeesreasanneesseessannesssenns 488
DB_ENV->MULEX_GET_MAX() vvveerrrennnureereearaneeessessnneeessesssansssssessansesssessnnnaes 489
DB_ENV->muteX_get_Tas_SPINS() «eeeeeeerreerinreereenrneeerreesanneesseessannesssessannaesses 490
DB_ENV->MULEX_LOCK() trretttiiiiittttiiiiiiitttteiiiiteeeeeanineeeeeeeainseeeeeeesnnseseeenns 491
DB_ENV->mMUEEX_SEt_aliGN() veueererrtrrretrenneerereeeeneeeeneeereneeeesneeeoseeessnneeenneens 492
DB_ENV->mutex_set_iNCrement() .ovveeeiiiiiiiiiiiiiieiieeieieiiieeieieeieeeeensiaeiansnnnnnns 493
DB_ENV->MUEEX_SET_TNTE() teeeriiiiiiiiiiiiiiiiiiiiiiiiiieneeeeereeeeeseeseeeeseseeeeeeeeeeees 495
DB_ENV->MULEX_SET_MAX() +ururrrrrnnreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesesessssesesssnnnnnns 496
DB_ENV->muteX_Set_tas_SPINS() «eeueeeerreernurreereerrneeesressanneesseesnansesssessannaesses 498
D o N A 1 (U = G - Y o (PP 499
DB_ENV->muteX_stat_Print() «eooeeeeerrerriiieriiiiiiteriearaneeereeranneesseessansesseennes 501
DB_ENV->MUEEX_UNLOCK() +evveintetttiiiiiitteteteiiiteeeetetaiieeeeeeeassseeeeeesesnsseseeennns 502
10. Replication Methods .....iiiieiiiiiiiiiiiiii it eeeterenneeeeneeeesneerenneeraneesesneeeanns 503
Replication and Related Methods ......ceveueiiiiiiiiiiiiiiiii e e i eeenaeenas 504
The DB_SITE Handle ....ciinuiiiiiiiiitiiiiieiieiteteieeeeeeeranneeeeneesesneerennseennes 506
The DB_CHANNEL Handle ..ccuueiiiiniiiiitieiiteeiieeeeieeeeeneeeenneeesnaeeesnaeessneeesnness 507
DB_CHANNEL->CLOSE() teuvveeenuteeanueeenueeeenueeeeeeeesneeessneeesnassesnsssssnseessassesnnees 508
DB_CHANNEL->SENA_MSZ() +eeuuteenueeenneeeenueeeenaeeesnaeeesneeessaseesasessnseessnnsesnnses 509
DB_CHANNEL->SENd_reqUESE() +eeueeeenneeeenueeereeeenneeesnueeesneesesneeessnesesnasssanaees 511
DB_CHANNEL->SEt_tiMEOUL() +uuuuuerrrereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesessssssessssnannnnns 513
DB_SITE->ZEt_CONTIG() veeeerrtrerueererueeenueeeenueereneeeesneerenaeessnneeesneeeesnseesnsesannes 514
DB_SITE->ZEt_addreSS() «eeveeeeeneeeerneerenueeraneeeenneeeenaeeesneeeesneessnnesssnessennsseanes 515
DB_SITE->ZEE_€10() “eeeerrteernuerenneerenuteeaneeeesueeeenneeesneeeesnseeessseesnsssesnseesnnneens 516
DB_SITE->TEMOVE() wevvrerreereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseessesssssssesssssssssnnnnnnnnnns 517
DB_SITE->SEt_CONTIG() veeeeueerenneerenueeenueeeerueeeeneeeesneesesaeeesneseesneesesnseesnnssannes 518
DB_ENV->1eP_€lECT() terrtrentirietieeteteieteeaieeeeaneeeenaeeeseesesnseesnnseesnsssennneens 520
DB_ENV->rep_get_ClOCKSKEW() «ueieuiiieiiieiiieiiiiiieiiteiiteinteenteenteenteenteenesenneans 523
DB_ENV->rep_get_CONTIG() «eevrrererutierieereneeeerueeeeieeeeseeessneeessaeessneeessneeesnnees 524
DB_ENV->rep_get_lMit() toueieeiireiiiiiiiiiiiiiiiieineiitiiteeatreatretineerneeaneennees 525
DB_ENV->rep_get_NSTTES() teveeennnnterreriintetrerannnneeeeeasanneessesssnnsessesosnnassssanes 526
DB_ENV->rep_get_Priority() «ooeeeeeiiieiiiiiiiiiiiiiiiiiieiiitiiiittiiiteiiieteinsesenas 527
DB_ENV->rep_get_reqUEST() ceuuureerreerrnneerreeanrneeeeeesanneeesesessaneeessessnnssssseannns 528
DB_ENV->rep_get_timeout() ..covveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii it eeiaeeans 529
DB_ENV->rep_proCess_MESSAGE() «eveuurerenuteiruteriruteriuteiiuererntesesusesssesesasesnns 530
DB_ENV->rep_set_ClOCKSKEW() .uveierutiriietirieiiiiteriieteeieerenneeesneeeesneeeennseennes 533
DB_ENV->rep_Set_CONTIG() teevrrerernteeruerenneeeenueeesieeessneeessneeessaeessnaeessnesesnnees 535
DB_ENV->rep_sSet_liMit() weeeerueeeeruteerieeeeneeeeneeeesieeeeseeeenaeeessaeessneeessnecesnnees 539
DB_ENV->rep_SeT_NSTLES() tevreerunrterrerrinntetreennanreeeeeasnneessesssnnsessesssnnesssennns 541
DB_ENV->rep_Set_Priorify() ceeeeeeeeeeereeerateereerraneterreessnneeeseessnnnesssessanneessenns 543
DB_ENV->rep_Set_reqUESE() ceueereerreenaneetreennnnneeeeeesanneeeseeesanessssessnnsassseannas 545
DB_ENV->rep_set_tiMeOUL() «.uviieriiteiiiiiiietiieiiieetieeranntesreeannnessseasannaesses 547
DB_ENV->rep_set_transPOrt() c..ueeeeeeeeeraeeeeerenrneeeeeeassaneeesseesnnneesseessannesssenss 550
DB_ENV->1eP_SET_VIEW() tuuuetttiiiiiitetieeenianeteeeenanneessesesnnnessssassnneesssasannnessss 553
DB_ENV->T@P_STArt() «eeeeeeeerneeeereenineeeereeenaneeessessanneessesssansesssessannsessessnnnnes 555
DB_ENV->1eP_StAt() +eeeeeeruntetreennnnteeeeeennnneeeeeesnneessesesnnnessssossnnsesssasannnessss 557
DB_ENV->rep_stat_Print() teeeeeereeiieiiitetieiiiiteeiteenieeeeseeesnneesssessnnneesseannns 564

2/17/2015

DB C API Page ix



DB_ENV->TEP_SYNC() eueteererennuneeereansaneesseessaneeessessnansesssessansssssesssnnsassessnas 565

DB_ENV->repmgr_Chann@l() ....oeeveeeieeieeiiieitiitientiiiieneireerneerneesneoeneocnnens 566
DB_ENV->repmgr_LlOCal_STEE() +.eeveeeieirneerieiiiteiiteiiteiiteiitieiteentientieeeeneeaaennns 568
DB_ENV->repmgr_get_ack_POLICY() «euveerrerniriniriiiitiiiiiiiieiieiieenieenneeeneeennes 569
DB_ENV->repmgr_get_inCoOmMing_qUeUE_MAX() ..cevereerirurerireeeiineerireeeieneessnacens 570
DB_ENV->repmgr_msg_diSPatCh() «.eoeeveerieiiieiinieiiiiiiiiiiiiiiiiiitiiiiiieineenneenneens 571
DB_ENV->repmgr_set_ack_POLICY() «euveeureeniritiniiiiiiiiiiiiiiiienneenieeineeeneeenees 573
DB_ENV->repmgr_set_inComing_qUeUE_MAaX() ..eeeevreerirurerieeriieeriinrerenecesenness 575
DB_ENV->1rePmMGI_Sit() «eveeereerruteereeennaneeeeressaneeessessnneeessesssaneesssassansasssanns 577
DB_ENV->repmgr_site_by_@id() «eoeeveetiieiiieiiieiiiiiiieiitiiitiiiteinteintienteeeeaaennaes 579
DB_ENV->repmgr_site_LiST() «vuvevurerternteiiiitietiiitiiiiiniiieeineeineerieenneeeneeannes 580
DB_ENV->repmM@r_Start() «ueeeeeeeeerneeerreenianeeeeeessaneeessessanneessessansesseessannassses 582
DB_ENV->repmM@r_Stat() «eeeeeeeernneerreerrnnterreeasanneesseasnneessessnnsessesosnnassesanes 585
DB_ENV->repmgr_stat_print() «oooeeeerieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeiieenens 588
DB _SITE->ClOSE() tevernrueeeteeeaiiueeettenaieeeeeeeannneeeeeesansseseeeesnsesseesssnssesseennns 589
DB_ENV->tXN_aPPlEA() tutrentrentieiiiiiiiiiiiitiietiieeiieetneeeneetieesneosnsoensecnnenns 590
DB_TXN->set_COMMIt_TOKEN() tuuurretieriiintetieiiiiteteteeiieeeeeeeniseeeeeeensnseeseennns 592
11. The DB_SEQUENCE Handle ....cc.ciiiiiiiiiiiiiiiiiiiiiiiiieeiieiieeteenieetneeaneecnnenns 593
Sequences and Related Methods ......cceeiiiiieiiiiiiiiiiiiiiiiii i ieeieereneeeaaeen 594
D _SEQUENCE _CrEALE ..uviiietiiitt ittt iiiteeet et eteneeeeaneerenaeeeanaeeesneesannssennes 595
DB_SEQUENCE->CLOSE() vtteutrnnerneereerteneeinteenteeteenteenteentsenssonssoseesnesnncsnees 597
DB_SEQUENCE->GEE() +euutrentrnntrintreerieerteinteenteenteanteenteenssenssenssonessncssecsnees 598
DB_SEQUENCE->get_CaCh@SIZE() vveerrrerenneerenueeeeieeeenneeeenaeeesneeeesneeecnnseesnaeenns 600
DB_SEQUENCE->GEt_ADP() «teeutrntreutriutinniiieeineeiieeiteriteenteenteenteenssoncsnecsneess 601
DB_SEQUENCE->GEt_flags() «.eeeueerneerntertrenteintientieniientretiaetinneisnessecsseesneenns 602
DB_SEQUENCE->GEE_KEY() +euutrntrentientientinettietiietineeineetneeeneesneesneosnsocnsocnnenns 603
DB_SEQUENCE->ZEt_FANGE() +veeeutrnutrautrnnerneeeneerneerteseoenseenseenssonssoncssacsnness 604
DB_SEQUENCE->INTtial _ValU©() tevvirretiiiiiiiitetiiiiiiteeieeiiieeeeteeaiiseeeeeenninseeeenn 605
DB_SEQUENCE->0PEN() tuteuuttnntrenttentrantieereetneerneeriteeneeensecnsoenssonssonssonssnns 606
DB_SEQUENCE->IE€MOVE() wevvrrrrrrreeerereeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseessesssesssssssennns 608
DB_SEQUENCE->S€t_CAChESTZE() tevrrrrttiiiiiitttiiiiiiietieeiiieeeteeeiieeeeeeeananneaeenn 610
DB_SEQUENCE->SEE_flagS() +«veeueeeneerneernterneeenteentienteenteeatreessonssonesseesneesnaenns 611
DB_SEQUENCE->SEt_FANGE() eveeeerreenuneeerreeraneeesseassansesssessansesssesssansesseesnnnns 612
DB_SEQUENCE->STAL() teuveuteentrentranteentronerenerreerneesieesseeesocnnosnssonssonssonssons 613
DB_SEQUENCE->Stat_Print() «eeeeeeeutientienerenerneerneeineerieerneeeneesneesnsosnsoensocnseens 615
12. The DB_TXN Handle ....ciuiiieiiiiiiii ittt ettt et e tieesieeeneeenaeans 616
Transaction Subsystem and Related Methods .........ccovviiiiiiiiiiiiiiiiiiiiiiiiiiiiieneas 617
DB->get_transactional() teeueeeereeeereeierueereneeeenneereneeereneeeesneerenneeesnnesesneesannes 618
DB_ENV->CASGroUpP_beZiN() «eeeerutereretiereerennterereteeaeerenueeesneeeesnessesnseesnsasanns 619
DB_ENV->8E_tX_MAX() +teerennurterreannneeerrensnneeeseessannesssessannaessesssansasssessanns 620
DB_ENV->get_tX_timestamp() «oeeeeiereriiiiiietiiiiiiiteeieeiinnterreeannnneesseasannaesses 621
DB_ENV->SET_EX_MAX() teurntitiiiiiiiiinnneneeneeeseesessessesseeeseseeeeseeeeeeseeeesseanns 622
DB_ENV->set_tX_timestampP() «oeeeeneteriiiiiinetiieiiiterreeraneesreeennnnesseeasanneesses 624
(]2 2 N AV o T (=L e0) =T f I P P T N 625
DB_ENV->tXN_DEGIN() teeurttiiintieiietieitteeiteeeieeeeareeeenneeesneeeesnaeessneeesnnesesnnens 627
DB_ENV->tXN_CheCKPOINT() tuvveeenetiernteieitieeieeeeaneeeeineeeeneeeesneeeesneeesnaeeenneeens 631
D] 3 S N A o ) -1 (T PP 633
DB_ENV->tXN_Stat_Print() «oeeeeereieeeiiiiiiietiieiiieerreennnneesreesannsessesosnnesssennes 637
(D15 I =1 o Yo o o ) I P 638

2/17/2015

DB C API Page x



DB_TXN->COMMIT() 1uuvrerrrerrneterrennineeereearaneeessessanneessesssnnsesssessannsessessnnnnes 639

DB_TXN->AISCANA() teueveeneerenueerereeeenneerenaeeraneeeesneesonaeessnsssssnsssonassssnesesnnees 641
DB_TXN->ZE_NAME() uuvrerrrerrinntetreeananneeeeeesanneessesesaneesssessnnsessssessansasssanss 643
DB_TXN->8et_Priority() «eeeeeueeiirutiiiieiiiiiiiiitiiitiiiitiiiieiiiteiiiteriiiesenaeenes 644
D15 T I E e | T 645
DB_TXN->PrePAre() teueeerenuteiiuttiiiuteiinetiiiterinuteiiieteerutereratesosstsesasesesssesanns 646
(3] 0 D B =l o =11 1 1= (I 648
DB_TXN->Set_Priority() «eeeeeueeriruieiiieiiiiitiiiiieiiitiiiiiiiteriiteiiiteriiieranacenes 649
DB_TXN->Set_tiMEOUL() tevverrunrterrreninteerreiraneeerrearianreessessanneessessnnsesseeonnnns 650
13. Binary Large ODJeCES ..iiueiitiiitiiitiiitiiit ittt it ee ettt iieeraeetaeeaneeanaenns 652
BLOBs and Related Methods .....cceeiiieiiiiieiiiiiiiiitiniietieieeeeneeennneeesnneesaneens 653
DS s 1Tl o] (o] s e | I PP PP 654
DB->get_blob_threshold() ..eieeeeeerieiiiiiiiiiiii i i eeieeeeneeeaaeeeenaeeaanaees 655
D) Rl o] (o] s e | I PP PP 656
DB->set_blob_threshold() «.eieeeeereieiiiiieiiiiiiiiiiii e eeineeeeieeeeaeeeenneeeanaens 657
DBC->AbD_StrEAMI() tevnrrreettieiiteeetteeiieeeeeeeanaeeeeeesanaseeseeeasnsseessesansssseeennns 659
DB_STREAM->CLOSE() teeunuettttenaieeetteeaieeeeteeeaneeeeeesesssseseesesnsseseeensnnsesesenns 661
DB_STREAM->FEAA() +uverneerneenntennteenteentienttenetaaesneesaeesisossoensocnseonssonssoassnns 662
DB_STREAM->STZE() tutenntentientiettetientireeteeetretiaeetaeetneeeneeeneosnosnssensscnssons 664
DB_STREAM->WIIEE() uvtuntinneinetietieeiteitetnteenteenteentsentsessenssentsonssoncssacsnns 665
DB_ENV->get_blob_dir() veeereteerietieieieeitieiieeeeneeeaneeeereeeesneeeenaeeesnseessnneenns 667
DB_ENV->get_blob_threshold() «.eeveeeeeeieriiiiriiiriiiiiiiiieiieeeiieeeneeeenneeaannees 668
DB_ENV->Set_blob_dir() coveeeeiiiiiiiiiiiiiiiiii it it e it eeeeiieeeeeeeainaeeenan 669
DB_ENV->set_blob_threshold() ..ccieeeiiiiiiiiiiiiiiiiiiiiiiii i ittt eeeiie e ceeenaaas 670
A. Berkeley DB Command Line ULIlItieS ..coceevriiiiiiiiiiiiiiiiiiiiiiiiiieiiieiieiieenneeaneens 672
U = P 673
oo T Tl o1 1 T PPN 674
a0 3ol g <ol 40T 1 1 3 | N 676
oo Ja [T Vo | Uo o - QR PP PPN 678
oo Ja (011 0o T PP PP 680
oo 3 3 To] T Ted (¥ o J P PP 684
oo T o T- Vo [ PP PPN 687
oo T U= BT ) Y N 692
a0 o 13 o U - N 695
oo T (=T el0) Y PP PPN 697
(oo T (=] o] A [of- | - R PP 700
(oo o | Mol Ta (=1 T=] o H O PP 702
a0« | S PP 708
oo T - Y PO PPN 710
oo T AT 1= PP PP 714
(o[ o TN o) - Vo [ I PP PPt 715
oY= 1 YA PP 717
| L] = PP 719
B. HistOriC INTErfates .viiiiniiiiitiiiiiiii it eit et eeeeeeeeneeeenaeeesneesanneesenneennnes 720
I o] a [oll 01T o - Tel =L PP P PPN 721
o[ 0] 0014 2 a1 711 H PP 722
11T T ol o PP TP 726
C. Berkeley DB Application Space Static FUNCLIONS .....civviiiiiiiiiiiiiiiiiiiiiiiieiieennaen, 728
1) =Y (ol U Lot [ LS N 729

2/17/2015 DB C API Page xi



Ab_eNV_SEt_fUNC_ClOSE 1.uuiiiiiiiiiiii ittt ettt et ettt eeeiiaseeeeeannnneeeenn
db_env_set_fUNC_dirfree .uuiiiiiiii i it et ettt eeerie e e eanas
db_env_set_fUNC_dirlist ....oiiiiiiiiiiiiiiiiii ittt ittt ieeeiieeeeeeeeannaeeeeanns
Ab_ENV_SEt fUNC_EXISTS tuurtttiiiiiitt ittt ettt teeeiieeeeeeeeianeeeeeennnseeeeennn
db_env_set_funC_file_Map ...cieeiiiiiiiiiiiiiiiiiiteeiiteeneeeenneeeaneeeenneeesnneenns
o[ =T O\ W 1 Lol { =T PP
db_enV_set_fUNC_fSYNC t.uuiiiitiiiii ittt e e e it eeeneeeaeneeennneeaanneen
db_env_set_fUuNC_ftrUNCate ..oiiiiiiii it et et e e aiaaeeen
db_env_set_fUNC_I0INTO tiiiiitiiiiiiiiiii it it et e i teeeieeeereeenaeaeen
db_env_set_funC_MalloC ...civiiiiiiiiiiiiiiiii it ittt e eeiiee e eeniaaeeeeeanns
db_enV_Set_fUNC_OPEN ..ttt iiiieiieitteeiteeeeeeenneeeenneeesneeeesneeeanneennn
db_env_set_funC_Pread ......c.evieiiieiiiiiiiiiiiiii it e e aees
db_env_set_fUNC_PWIITE ..oiuuiiiiiitiiit ittt ettt e e eeaeaaas
db_enV_Set_fUNC_I A .iiviiiiiiii ittt ettt ettt eetieeeeeeeanaeeeeeannnnes
db_env_set_fuNC_realloC ...ciiiiiiiiiiiiiiiiiii ittt ittt e eeii et eeeaaaeaeeanns
db_env_set_funC_region_MapP ..c.cieeiiieiiieiiieiiiteiiteiiteiiteetrentretieneianerneesneenns
db_enV_Set_fUNC_IENAME ..\iiiiiiiiii ittt e eiie et eeeeiieeeeeeeeniaseeeeeannnnseeenn
Ab_eNV_Set_fUNC_SEEK ittt e it e ettt ee e e e eiaaaaeen
db_env_set_funC_UNUINK .....oiiiiiiiiiiiiiiiiiii i ittt et e eeii et eeenanaeaeens
Ab_ENV St fUNC WL .ttt ittt ittt ettt e e ittt eeeeineeeeeannnnaaeenn
db_env_set_func_yield ....coceeiiiiiiiiiiiiiiiii e
D. DB_CONFIG Parameter REfEIENCE ...uveitiiiiiii ittt ieeeiiieeetteeaieeeeeeeannnaeeeenn
DB_CONFIG Parameters .uuueiiiiiiiiieieiteeteeeeetieeeeeeeeeeeeeseeeesesssssesesssssssssnnnnnns
Ve [ e = L = 1« | [ PPN
LS Y= - L] 3 N
L U =] Wl [ Lol =11 1= 1| O
L a L0 =] v 5 T DN
MUEEX_SET_tAS_SPINS «uettinntiiiiiiiiiiiitiii ittt eiitereiatesenateeiasesenans
FEP_SEt_CLOCKSKEW . .uietiiii i et et ee e reeaees
(S o IR A (o] 1 < PO
L] T A 1131 N
FEP_SEE NSIEES ettt e aea
L] 0TS o 1 o 1
TEP_SEE TOQUESE tuuttiiittieitteeieteeeeteernteeeeeeeeneeeenneeesnseeesnsesennseesnnseesnneens
FEP_SET_LIMEOUL ..eitiiiiiii i i et e st re et nas
rePMEr_SET_aCK_POLICY «iuutiintiitiitiitiiitiiii ittt eereeenteenteenteeneaeaaes

730
731
732
733
734
736
737
738
739
740
741
742
743
744
745
746
748
749
750
751
752
753
754
756
757
758
759
760
761
762
763
764
765
766
767
768

repmgr_set_inComing_qUEUE_MAX ....ceivieiriieeriineerireeeiineesssasesesecsssasesenacess 709

=] 0] 0 0T Y 1 =N
1] i ot= Lol 11T v = N
Y] o= Lol o LT 1. = 3
L] e ==Y = || PN
1Y) e =Y - T U= 3 PN
£ A = £ P
set_intermediate_dir_mMode ...coviiiiiiiiiiiiiiiii i e e e eean
L A = 013 (= P
£ A = |
SEt_Lg_fIlemOde ..ooeeiiii i e

£ A = 1= PN

A C= 2o o] 0111 - O PP

770
771
772
773
774
775
777
778
779
780
781
782

2/17/2015

DB C API Page xii



= e (=] (=Tt A PP PP PP PO PP £ X
SEt_LK_MaX_LOCKEIS .uuviiiiiiiii it eii ettt eeeieeeesneeeenaeeeeneeessnecesnneenanes 184
SEE_ LK _MaX_LOCKS tennueiiiitieiitiiii et eeiteeeteeeineeeeneeeasneeeesnseesnnessnneeesnnees 18D
set_LK_MaX_0DJECES wivreiiiit i ee e e et eee et eeeeeeenneeeanaeeaes 180
SEt_LK_Partitions tivuueieeietieiiiieiit it eeeieeeeteeeenneeaeneeeasneeesnaeeesneeenaneeeannees 187
(o) BY=) il olo) 1) i SO PPPPPPNY £ . :
Set_MP_MaX_0PENfd .uiieueiiiiiiiiitieiieieiteeerteeeneerenneeesnaeeesneesssnssesnnssasneees 789
= g ] I 1 4 b= D Y L = P 4°10]
SEL_MP_MMAPSIZE .uetiiiiiiiiitiiiieiietereenaneeereeansaneesssessansesssesssassssssassansess 191
SEE_OPEN_flags wuieeneiiiiitiiiiiiiii i ei et e et eerteeeneeeeeneeeenneeeanaeeanneeees 192
L 21 0 T ) VA O P PP PP PP PPPPPPY "X |
set_thread_CoUnt ....ciiiiiiiiiiii it eieiiceeieeeeeneeensneeesnaeeaaneess 194
L3 o o 1= 0T U PP 4°1)
Y {117 0 e | | S PP PP PP PPPRNY 4°
L] o 0 1 = D PP A°X
L] 1 o To - P PP PP OPPPPPPPPPRY 4°1

2/17/2015 DB C API Page xiii



Preface

Welcome to Berkeley DB 12c¢ Release 1 (DB). This document describes the C API for DB library
version 12.1.6.1. It is intended to describe the DB API, including all classes, methods, and
functions. As such, this document is intended for C developers who are actively writing or
maintaining applications that make use of DB databases.

2/17/2015 DB C API Page xiv



Conventions Used in this Book

The following typographical conventions are used within in this manual:

Structure names are represented in monospaced font, as are method names. For example:
"DB->open() is a method on a DB handle.”

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory.”

Program examples are displayed in a monospaced font on a shaded background. For example:

/* File: gettingstarted_common.h */

typedef struct stock dbs {
DB *inventory_dbp; /* Database containing inventory information */
DB *vendor_dbp; /* Database containing vendor information */

char *db_home_dir; /* Directory containing the database files */
char *inventory_db_name; /* Name of the inventory database */

char *vendor_db_name; /* Name of the vendor database */
} STOCK_DBS;

Note

Finally, notes of interest are represented using a note block such as this.

2/17/2015

DB C API Page xv



For More Information

Beyond this manual, you may also find the following sources of information useful when
building a DB application:

o Getting Started with Berkeley DB for C

» Getting Started with Transaction Processing for C

» Berkeley DB Getting Started with Replicated Applications for C
» Berkeley DB C++ API Reference Guide

» Berkeley DB STL API Reference Guide

» Berkeley DB TCL API Reference Guide

» Berkeley DB Installation and Build Guide

» Berkeley DB Programmer's Reference Guide

» Berkeley DB Getting Started with the SQL APIs

To download the latest Berkeley DB documentation along with white papers and other
collateral, visit http://www.oracle.com/technetwork/indexes/documentation/index.html.

For the latest version of the Oracle Berkeley DB downloads, visit http://www.oracle.com/
technetwork/database/database-technologies/berkeleydb/downloads/index.html.

Contact Us

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB at: https://forums.oracle.com/forums/forum.jspa?forumiD=271, or for Oracle
Berkeley DB High Availability at: https://forums.oracle.com/forums/forum.jspa?forumiD=272.

For sales or support information, email to: berkeleydb-info_us@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

2/17/2015 DB C API Page xvi


http://docs.oracle.com/cd/E17076_02/html/gsg/C/BerkeleyDB-Core-C-GSG.pdf
http://docs.oracle.com/cd/E17076_02/html/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf
http://docs.oracle.com/cd/E17076_02/html/gsg_db_rep/C/Replication_C_GSG.pdf
http://docs.oracle.com/cd/E17076_02/html/api_reference/CXX/BDB-CXX_APIReference.pdf
http://docs.oracle.com/cd/E17076_02/html/api_reference/STL/BDB-STL_APIReference.pdf
http://docs.oracle.com/cd/E17076_02/html/api_reference/TCL/BDB-TCL_APIReference.pdf
http://docs.oracle.com/cd/E17076_02/html/installation/BDB_Installation.pdf
http://docs.oracle.com/cd/E17076_02/html/programmer_reference/BDB_Prog_Reference.pdf
http://docs.oracle.com/cd/E17076_02/html/bdb-sql/BDB-SQL-Guide.pdf
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html
https://forums.oracle.com/forums/forum.jspa?forumID=271
https://forums.oracle.com/forums/forum.jspa?forumID=272
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

Chapter 1. Introduction to Berkeley DB APIs

Welcome to the Berkeley DB API Reference Manual for C.

DB is a general-purpose embedded database engine that is capable of providing a wealth of
data management services. It is designed from the ground up for high-throughput applications
requiring in-process, bullet-proof management of mission-critical data. DB can gracefully scale
from managing a few bytes to terabytes of data. For the most part, DB is limited only by your
system’s available physical resources.

This manual describes the various APls and command line utilities available for use in the DB
library.

For a general description of using DB beyond the reference material available in this manual,
see the Getting Started Guides which are identified in this manual's preface.

This manual is broken into chapters, each one of which describes a series of APIs designed
to work with one particular aspect of the DB library. In many cases, each such chapter is
organized around a "handle", or class, which provides an interface to DB structures such as
databases, environments or locks. However, in some cases, methods for multiple handles
are combined together when they are used to control or interface with some isolated DB
functionality. See, for example, the The DB_LSN Handle (page 376) chapter.

Within each chapter, methods, functions and command line utilities are organized
alphabetically.

2/17/2015

DB C API Page 1



Chapter 2. The DB Handle

The DB is the handle for a single Berkeley DB database. A Berkeley DB database provides

a mechanism for organizing key-data pairs of information. From the perspective of some
database systems, a Berkeley DB database could be thought of as a single table within a larger
database.

You create a DB handle using the db_create (page 21) function. For most database
activities, you must then open the handle using the DB->open() (page 70) method. When
you are done with them, handles must be closed using the DB->close() (page 13) method.

Alternatively, you can create a DB and then rename, remove or verify the database without
performing an open. See DB->rename() (page 81), DB->remove() (page 79) or DB-
>verify() (page 156) for information on these activities.

It is possible to create databases such that they are organized within a database environment.
Environments are optional for simple Berkeley DB applications that do not use transactions,
recovery, replication or any other advanced features. For simple Berkeley DB applications,
environments still offer some advantages. For example, they provide some organizational
benefits on-disk (all databases are located on disk relative to the environment). Also, if you
are using multiple databases, then environments allow your databases to share a common in-
memory cache, which makes for more efficient usage of your hardware's resources.

See DB_ENYV for information on using database environments.

You specify the underlying organization of the data in the database (e.g. BTree, Hash, Queue,
and Recno) when you open the database. When you create a database, you are free to specify
any of the available database types. On subsequent opens, you must either specify the

access method used when you first opened the database, or you can specify DB_UNKNOWN in
order to have this information retrieved for you. See the DB->open() (page 70) method for
information on specifying database types.

2/17/2015

DB C API Page 2



Library Version 12.1.6.1

The DB Handle

Database and Related Methods

Database Operations

Description

DB->associate()

Associate a secondary index

DB->associate_foreign()

Associate a foreign index

DB->close()

Close a database

DB->compact()

Compact a database

db_create Create a database handle

DB->del() Delete items from a database

DB->err() Error message

DB->exists() Return if an item appears in a database
DB->fd() Return a file descriptor from a database
DB->get() Get items from a database

DB->get_byteswapped()

Return if the underlying database is in host
order

DB->get_dbname()

Return the file and database name

DB->get_multiple()

Return if the database handle references
multiple databases

DB->get_open_flags()

Returns the flags specified to DB->open

DB->get_type()

Return the database type

DB->join()

Perform a database join on cursors

DB->key_range()

Return estimate of key location

DB->open()

Open a database

DB->put()

Store items into a database

DB->remove()

Remove a database

DB->rename()

Rename a database

DB->set_priority(), DB->get_priority()

Set/get cache page priority

DB->stat()

Database statistics

DB->stat_print()

Display database statistics

DB->sync()

Flush a database to stable storage

DB->truncate()

Empty a database

DB->upgrade()

Upgrade a database

DB->verify()

Verify/salvage a database

DB->cursor()

Create a cursor handle

Database Configuration

DB->get_partition_callback()

Return the database partition callback

DB C API

Page 3




Library Version 12.1.6.1

The DB Handle

Database Operations

Description

DB->get_partition_keys()

Returns the array of keys used for the
database partition

DB->set_alloc()

Set local space allocation functions

DB->set_cachesize(), DB->get_cachesize()

Set/get the database cache size

DB->set_create_dir(), DB->get_create_dir()

Set/get the directory in which a database is
placed

DB->set_dup_compare()

Set a duplicate comparison function

DB->set_encrypt(), DB->get_encrypt_flags()

Set/get the database cryptographic key

DB->set_errcall()

Set error message callback

DB->set_errfile(), DB->get_errfile()

Set/get error message FILE

DB->set_errpfx(), DB->get_errpfx()

Set/get error message prefix

DB->set_feedback()

Set feedback callback

DB->set_flags(), DB->get_flags()

Set/get general database configuration

DB->set_lk_exclusive(), DB-
>get_lk_exclusive()

Set/get exclusive database locking

DB->set_lorder(), DB->get_lorder()

Set/get the database byte order

DB->set_msgcall()

Set informational message callback

DB->set_msgfile(), DB->get_msgfile()

Set/get informational message FILE

DB->set_pagesize(), DB->get_pagesize()

Set/get the underlying database page size

DB->set_partition()

Set database partitioning

DB->set_partition_dirs(), DB-
>get_partition_dirs()

Set/get the directories used for database
partitions

Btree/Recno Configuration

DB->set_append_recno()

Set record append callback

DB->set_bt_compare()

Set a Btree comparison function

DB->set_bt_compress()

Set Btree compression functions

DB->set_bt_minkey(), DB->get_bt_minkey()

Set/get the minimum number of keys per
Btree page

DB->set_bt_prefix()

Set a Btree prefix comparison function

DB->set_re_delim(), DB->get_re_delim()

Set/get the variable-length record delimiter

DB->set_re_len(), DB->get_re_len()

Set/get the fixed-length record length

DB->set_re_pad(), DB->get_re_pad()

Set/get the fixed-length record pad byte

DB->set_re_source(), DB->get_re_source()

Set/get the backing Recno text file

Hash Configuration

DB->set_h_compare()

Set a Hash comparison function

DB->set_h_ffactor(), DB->get_h_ffactor()

Set/get the Hash table density

DB C API

Page 4



Library Version 12.1.6.1

The DB Handle

Database Operations

Description

DB->set_h_hash()

Set a hashing function

DB->set_h_nelem(), DB->get_h_nelem()

Set/get the Hash table size

Queue Configuration

DB->set_q_extentsize(), DB-
>get_q_extentsize()

Set/get Queue database extent size

Heap

DB->set_heapsize(), DB->get_heapsize()

Set/get the database heap size

DB->set_heap_regionsize(), DB-
>get_heap_regionsize()

Set/get the database region size

DB_HEAP_RID

Database Utilities

db_copy

Copy a named database to a target directory

2/17/2015

DB C API

Page 5



Library Version 12.1.6.1 The DB Handle

DB->associate()
#include <db.h>

int
DB->associate(DB *primary, DB_TXN *txnid, DB *secondary,
int (*callback) (DB *secondary,
const DBT *key, const DBT *data, DBT *result), u_int32_t flags);

The DB->associate() function is used to declare one database a secondary index for a
primary database. The DB handle that you call the associate() method from is the primary
database.

After a secondary database has been "associated” with a primary database, all updates to the
primary will be automatically reflected in the secondary and all reads from the secondary

will return corresponding data from the primary. Note that as primary keys must be unique

for secondary indices to work, the primary database must be configured without support for
duplicate data items. See Secondary Indices in the Berkeley DB Programmer's Reference Guide
for more information.

The DB->associate() method returns a non-zero error value on failure and 0 on success.

Parameters
primary

The primary parameter should be a database handle for the primary database that is to be
indexed.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 627); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 619); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected.

secondary

The secondary parameter should be an open database handle of either a newly created and
empty database that is to be used to store a secondary index, or of a database that was
previously associated with the same primary and contains a secondary index. Note that it is
not safe to associate as a secondary database a handle that is in use by another thread of
control or has open cursors. If the handle was opened with the DB_THREAD flag it is safe to
use it in multiple threads of control after the DB->associate() method has returned. Note
also that either secondary keys must be unique or the secondary database must be configured
with support for duplicate data items.

callback

The callback parameter is a callback function that creates the set of secondary keys
corresponding to a given primary key and data pair.

2/17/2015 DB C API Page 6


../../programmer_reference/am_second.html

Library Version 12.1.6.1 The DB Handle

The callback parameter may be NULL if both the primary and secondary database handles
were opened with the DB_RDONLY flag.

The callback takes four arguments:
¢ secondary
The secondary parameter is the database handle for the secondary.
* key
The key parameter is a DBT referencing the primary key.
» data
The data parameter is a DBT referencing the primary data item.
e result

The result parameter is a zeroed DBT in which the callback function should fill in data and
size fields that describe the secondary key or keys.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

The result DBT can have the following flags set in its flags field:
e DB_DBT_APPMALLOC

If the callback function needs to allocate memory for the result data field (rather than
simply pointing into the primary key or datum), DB_DBT_APPMALLOC should be set in the
flags field of the result DBT, which indicates that Berkeley DB should free the memory when
it is done with it.

e DB_DBT_MULTIPLE

To return multiple secondary keys, DB_DBT_MULTIPLE should be set in the flags field of

the result DBT, which indicates Berkeley DB should treat the size field as the number of
secondary keys (zero or more), and the data field as a pointer to an array of that number of
DBTs describing the set of secondary keys.

When multiple secondary keys are returned, keys may not be repeated. In other words,
there must be no repeated record numbers in the array for Recno and Queue databases,
and keys must not compare equally using the secondary database's comparison function for
Btree and Hash databases. If keys are repeated, operations may fail and the secondary may
become inconsistent with the primary.

The DB_DBT_APPMALLOC flag may be set for any DBT in the array of returned DBT's to
indicate that Berkeley DB should free the memory referenced by that particular DBT's data
field when it is done with it.

2/17/2015

DB C API Page 7



Library Version 12.1.6.1 The DB Handle

The DB_DBT_APPMALLOC flag may be combined with DB_DBT_MULTIPLE in the result DBT's
flag field to indicate that Berkeley DB should free the array once it is done with all of the
returned keys.

In addition, the callback can optionally return the following special value:

e DB_DONOTINDEX

If any key/data pair in the primary yields a null secondary key and should be left out of the
secondary index, the callback function may optionally return DB_DONOTINDEX. Otherwise,
the callback function should return 0 in case of success or an error outside of the Berkeley
DB name space in case of failure; the error code will be returned from the Berkeley DB call
that initiated the callback.

If the callback function returns DB_DONOTINDEX for any key/data pairs in the primary
database, the secondary index will not contain any reference to those key/data pairs, and
such operations as cursor iterations and range queries will reflect only the corresponding
subset of the database. If this is not desirable, the application should ensure that the
callback function is well-defined for all possible values and never returns DB_DONOTINDEX.

Returning DB_DONOTINDEX is equivalent to setting DB_DBT_MULTIPLE on the result DBT and
setting the size field to zero.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

e DB_CREATE

If the secondary database is empty, walk through the primary and create an index to it in
the empty secondary. This operation is potentially very expensive.

If the secondary database has been opened in an environment configured with transactions,
the entire secondary index creation is performed in the context of a single transaction.

Care should be taken not to use a newly-populated secondary database in another thread of
control until the DB->associate() call has returned successfully in the first thread.

If transactions are not being used, care should be taken not to modify a primary database
being used to populate a secondary database, in another thread of control, until the DB-
>associate() call has returned successfully in the first thread. If transactions are being
used, Berkeley DB will perform appropriate locking and the application need not do any
special operation ordering.

e DB_IMMUTABLE_KEY
Specifies the secondary key is immutable.

This flag can be used to optimize updates when the secondary key in a primary record will
never be changed after the primary record is inserted. For immutable secondary keys, a

2/17/2015

DB C API Page 8



Library Version 12.1.6.1 The DB Handle

best effort is made to avoid calling the secondary callback function when primary records
are updated. This optimization may reduce the overhead of update operations significantly
if the callback function is expensive.

Be sure to specify this flag only if the secondary key in the primary record is never changed.
If this rule is violated, the secondary index will become corrupted, that is, it will become
out of sync with the primary.

Errors

The DB->associate() method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.
EINVAL

If the secondary database handle has already been associated with this or another database
handle; the secondary database handle is not open; the primary database has been configured
to allow duplicates; or if an invalid flag value or parameter was specified.

Class
DB

See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 9



Library Version 12.1.6.1 The DB Handle

DB->associate_foreign()
#include <db.h>

int

DB->associate_foreign(DB *foreign, DB *secondary,,
int (*callback) (DB *secondary,
const DBT *key, DBT *data, const DBT *foreignkey, int *changed),
u_int32 t flags);

The DB->associate_foreign() function is used to declare one database a foreign constraint
for a secondary database. The DB handle that you call the associate_foreign() method
from is the foreignh database.

After a foreign database has been "associated” with a secondary database, all keys inserted
into the secondary must exist in the foreign database. Attempting to add a record with a
foreign key that does not exist in the foreign database will cause the put method to fail and
return DB_FOREIGN_CONFLICT.

Deletions in the foreign database affect the secondary in a manner defined by the flags
parameter. See Foreign Indices in the Berkeley DB Programmer’s Reference Guide for more
information.

The DB->associate_foreign() method returns a non-zero error value on failure and 0 on
success.

Parameters
foreign
The foreign parameter should be a database handle for the foreign database.

secondary

The secondary parameter should be an open database handle of a database that contains a
secondary index who's keys also exist in the foreign database.

callback

The callback parameter is a callback function that nullifies the foreign key portion of a data
DBT.

The callback parameter must be NULL if either DB_FOREIGN_ABORT or DB_FOREIGN_CASCADE
is set.

The callback takes four arguments:
¢ secondary
The secondary parameter is the database handle for the secondary.

e key

2/17/2015 DB C API Page 10


../../programmer_reference/am_foreign.html

Library Version 12.1.6.1 The DB Handle

The key parameter is a DBT referencing the primary key.
» data

The data parameter is a DBT referencing the primary data item to be updated.
o foreignkey

The foreignkey parameter is a DBT referencing the foreign key which is being deleted.
e changed

The changed parameter is a pointer to a boolean value, indicated whether data has
changed.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

flags
The flags parameter must be set to one of the following values:
e DB_FOREIGN_ABORT

Abort the deletion of a key in the foreign database and return DB_FOREIGN_CONFLICT
if that key exists in the secondary database. The deletion should be protected by a
transaction to ensure database integrity after the aborted delete.

e DB_FOREIGN_CASCADE

The deletion of a key in the foreign database will also delete that key from the secondary
database (and the corresponding entry in the secondary’'s primary database.)

e DB_FOREIGN_NULLIFY

The deletion of a key in the foreign database will call the nullification function passed to
associate_foreign and update the secondary database with the changed data.

Errors

The DB->associate_foreign() method may fail and return one of the following non-zero
errors:

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions
to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return

2/17/2015 DB C API Page 11



Library Version 12.1.6.1 The DB Handle

DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.
EINVAL

If the foreign database handle is a secondary index; the foreign database handle has been
configured to allow duplicates; the foreign database handle is a renumbering recno database;
callback is configured and DB_FOREIGN_NULLIFY is not; DB_FOREIGN_NULLIFY is configured
and callback is not.

Class

DB

See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 12



Library Version 12.1.6.1 The DB Handle

DB->close()

#include <db.h>

int
DB->close(DB *db, u_int32 t flags);

The DB->close() method flushes cached database information to disk, closes any open
cursors, frees allocated resources, and closes underlying files. When the close operation for a
cursor fails, the method returns a non-zero error value for the first instance of such an error,
and continues to close the rest of the cursors and database handles.

Although closing a database handle will close any open cursors, it is recommended that
applications explicitly close all their DBcursor handles before closing the database. The reason
why is that when the cursor is explicitly closed, the memory allocated for it is reclaimed;
however, this will not happen if you close a database while cursors are still opened.

The same rule, for the same reasons, hold true for DB_TXN handles. Simply make sure you
close all your transaction handles before closing your database handle.

Because key/data pairs are cached in memory, applications should make a point to always
either close database handles or sync their data to disk (using the DB->sync() (page 150)
method) before exiting, to ensure that any data cached in main memory are reflected in the
underlying file system.

When called on a database that is the primary database for a secondary index, the primary
database should be closed only after all secondary indices referencing it have been closed.

When multiple threads are using the DB concurrently, only a single thread may call the DB-
>close() method.

The DB handle may not be accessed again after DB->close() is called, regardless of its
return.

If you do not close the DB handle explicitly, it will be closed when the environment handle
that owns the DB handle is closed.

The DB->close() method returns a non-zero error value on failure and 0 on success. The
error values that DB->close() method returns include the error values of DBcursor-
>close() and the following:

DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

2/17/2015

DB C API Page 13



Library Version 12.1.6.1 The DB Handle

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.

Parameters

flags
The flags parameter must be set to 0 or be set to the following value:
e DB_NOSYNC

Do not flush cached information to disk. This flag is a dangerous option. It should be set only
if the application is doing logging (with transactions) so that the database is recoverable
after a system or application crash, or if the database is always generated from scratch
after any system or application crash.

It is important to understand that flushing cached information to disk only minimizes the
window of opportunity for corrupted data. Although unlikely, it is possible for database
corruption to happen if a system or application crash occurs while writing data to the
database. To ensure that database corruption never occurs, applications must either: use
transactions and logging with automatic recovery; use logging and application-specific
recovery; or edit a copy of the database, and once all applications using the database have
successfully called DB->close(), atomically replace the original database with the updated

copy.

Note that this flag only works when the database has been opened using an environment.

Errors

The DB->close() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.

The error messages returned for the first error encountered when DB->close() method closes
any open cursors include:

DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

2/17/2015

DB C API Page 14



Library Version 12.1.6.1 The DB Handle

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.
Class

DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 15



Library Version 12.1.6.1 The DB Handle

DB->compact()

#tinclude <db.h>

int
DB->compact(DB *db, DB _TXN *txnid,
DBT *start, DBT *stop, DB_COMPACT *c_data, u_int32_t flags, DBT *end);

The DB->compact() method compacts Btree, Hash, and Recno access method databases, and
optionally returns unused Btree, Hash or Recno database pages to the underlying filesystem.

The DB->compact () method returns a non-zero error value on failure and 0 on success.

Parameters
txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 627); if the operation is part

of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DB_ENV->cdsgroup_begin() (page 619); otherwise NULL.

If a transaction handle is supplied to this method, then the operation is performed using that
transaction. In this event, large sections of the tree may be locked during the course of the
transaction.

If no transaction handle is specified, but the operation occurs in a transactional database,
the operation will be implicitly transaction protected using multiple transactions. These
transactions will be periodically committed to avoid locking large sections of the tree. Any
deadlocks encountered cause the compaction operation to be retried from the point of the
last transaction commit.

start

If non-NULL, the start parameter is the starting point for compaction. For a Btree or Recno
database, compaction will start at the smallest key greater than or equal to the specified key.
For a Hash database, the compaction will start in the bucket specified by the integer stored in
the key. If NULL, compaction will start at the beginning of the database.

stop

If non-NULL, the stop parameter is the stopping point for compaction. For a Btree or Recno
database, compaction will stop at the page with the smallest key greater than the specified
key. For a Hash database, compaction will stop in the bucket specified by the integer stored in
the key. If NULL, compaction will stop at the end of the database.

c_data

If non-NULL, the c_data parameter contains additional compaction configuration parameters,
and returns compaction operation statistics, in a structure of type DB_COMPACT.

The following input configuration fields are available from the DB_COMPACT structure:

2/17/2015 DB C API Page 16



Library Version 12.1.6.1 The DB Handle

e int compact_fillpercent;
If non-zero, this provides the goal for filling pages, specified as a percentage between 1 and
100. Any page in the database not at or above this percentage full will be considered for

compaction. The default behavior is to consider every page for compaction, regardless of its
page fill percentage.

e int compact_pages;
If non-zero, the call will return after the specified number of pages have been freed, or no
more pages can be freed. The implementation does not guarantee an exact match to the
number of pages requested.

e db_timeout_t compact_timeout;

If non-zero, and no txnid parameter was specified, this parameter identifies the lock
timeout used for implicit transactions, in microseconds.

The following output statistics fields are available from the DB_COMPACT structure:
e u_int32_t compact_deadlock;

An output statistics parameter: if no txnid parameter was specified, the number of
deadlocks which occurred.

e u_int32_t compact_pages_examine;

An output statistics parameter: the number of database pages reviewed during the
compaction phase.

e u_int32_t compact_empty_buckets;

An output statistics parameter: the number of empty hash buckets that were found the
compaction phase.

e u_int32_t compact_pages_free;

An output statistics parameter: the number of database pages freed during the compaction
phase.

e u_int32_t compact_levels;

An output statistics parameter: the number of levels removed from the Btree or Recno
database during the compaction phase.

e u_int32_t compact_pages_truncated;
An output statistics parameter: the number of database pages returned to the filesystem.
flags

The flags parameter must be set to 0 or one of the following values:

2/17/2015

DB C API Page 17



Library Version 12.1.6.1 The DB Handle

+ DB_FREELIST_ONLY

Do no page compaction, only returning pages to the filesystem that are already free and at
the end of the file.

« DB_FREE_SPACE

Return pages to the filesystem when possible. If this flag is not specified, pages emptied as
a result of compaction will be placed on the free list for re-use, but never returned to the
filesystem.

Note that only pages at the end of a file can be returned to the filesystem. Because of the
one-pass nature of the compaction algorithm, any unemptied page near the end of the file
inhibits returning pages to the file system. A repeated call to the DB->compact() method

with a low compact_fillpercent may be used to return pages in this case.

end

If non-NULL, the end parameter will be filled with the database key marking the end of the
compaction operation in a Btree or Recno database. This is generally the first key of the
page where the operation stopped. For a Hash database, this will hold the integer value
representing which bucket the compaction stopped in.

Errors

The DB->compact() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

2/17/2015

DB C API Page 18



Library Version 12.1.6.1 The DB Handle

EACCES
An attempt was made to modify a read-only database.
EINVAL
An invalid flag value or parameter was specified.
Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 19



Library Version 12.1.6.1 The DB Handle

db_copy

#include <db.h>

int

db_copy(DB_ENV *dbenv, const char *dbfile, const char *target,

const char *password);
The db_copy () routine copies the named database file to the target directory. An optional
password can be specified for encrypted database files. This routine can be used on operating
systems that do not support atomic file system reads to create a hot backup of a database
file. If the specified database file is for a QUEUE database with extents, all extent files for
that database will be copied as well.
Parameters
dbenv
An open environment handle for the environment containing the database file.
dbfile
The path name to the file to be backed up. The file name is resolved using the usual BDB
library name resolution rules.
target
The directory to which you want the database copied. This is specified relative to the current
directory of the executing process or as an absolute path.
password
Specified only if the database file is encrypted. The resulting backup file will be encrypted as
well.
2/17/2015 DB C API Page 20



Library Version 12.1.6.1 The DB Handle

db_create
#tinclude <db.h>

int db_create(DB **dbp, DB_ENV *dbenv, u_int32_t flags);

The db_create() function creates a DB structure that is the handle for a Berkeley DB
database. This function allocates memory for the structure, returning a pointer to the
structure in the memory to which dbp refers. To release the allocated memory and discard the
handle, call the DB->close() (page 13), DB->remove() (page 79), DB->rename() (page 81),

or DB->verify() (page 156) methods.

DB handles are free-threaded if the DB_THREAD flag is specified to the DB->open() (page

70) method when the database is opened or if the database environment in which the
database is opened is free-threaded. The handle should not be closed while any other handle
that refers to the database is in use; for example, database handles must not be closed while
cursor handles into the database remain open, or transactions that include operations on

the database have not yet been committed or aborted. Once the DB->close() (page 13), DB-
>remove() (page 79), DB->rename() (page 81), or DB->verify() (page 156) methods are
called, the handle may not be accessed again, regardless of the method's return.

The DB handle contains a special field, app_private, which is declared as type void *. This
field is provided for the use of the application program. It is initialized to NULL and is not
further used by Berkeley DB in any way.

The db_create function returns a non-zero error value on failure and 0 on success.

Parameters
dbp

The dbp parameter references the memory into which the returned structure pointer is
stored.

dbenv

If the dbenv parameter is NULL, the database is standalone; that is, it is not part of any
Berkeley DB environment.

If the dbenv parameter is not NULL, the database is created within the specified Berkeley DB
environment. The database access methods automatically make calls to the other subsystems
in Berkeley DB, based on the enclosing environment. For example, if the environment has
been configured to use locking, the access methods will automatically acquire the correct
locks when reading and writing pages of the database.

flags
The flags parameter must be set to 0 or the following value:

« DB_XA_CREATE

2/17/2015 DB C API Page 21



Library Version 12.1.6.1 The DB Handle

Instead of creating a standalone database, create a database intended to be accessed via
applications running under an X/Open conformant Transaction Manager. The database will
be opened in the environment specified by the OPENINFO parameter of the GROUPS section
of the ubbconfig file. See the XA Introduction section in the Berkeley DB Reference Guide
for more information.

Errors
The db_create() function may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB

See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 22


../../programmer_reference/xa_xa_intro.html

Library Version 12.1.6.1 The DB Handle

DB->del()

#include <db.h>

int

DB->del(DB *db, DB_TXN *txnid, DBT *key, u_int32_t flags);
The DB->del() method removes key/data pairs from the database. The key/data pair
associated with the specified key is discarded from the database. In the presence of duplicate
key values, all records associated with the designated key will be discarded.
When called on a database that has been made into a secondary index using the DB-
>associate() (page 6) method, the DB->del() method deletes the key/data pair from the
primary database and all secondary indices.
The DB->del() method will return DB_NOTFOUND if the specified key is not in the database.
The DB->del() method will return DB_KEYEMPTY if the database is a Queue or Recno
database and the specified key exists, but was never explicitly created by the application or
was later deleted. Unless otherwise specified, the DB->del () method returns a non-zero error
value on failure and 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 627); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 619); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected.

key

The key DBT operated on.

flags

The flags parameter must be set to 0 or one of the following values:
« DB_CONSUME

If the database is of type DB_QUEUE then this flag may be set to force the head of the
queue to move to the first non-deleted item in the queue. Normally this is only done if the
deleted item is exactly at the head when deleted.

e DB_MULTIPLE
Delete multiple data items using keys from the buffer to which the key parameter refers.

To delete records in bulk by key with the btree or hash access methods, construct
a bulk buffer in the key DBT using DB_MULTIPLE_WRITE_INIT (page 195) and

2/17/2015

DB C API Page 23


../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 12.1.6.1 The DB Handle

Errors

DB_MULTIPLE_WRITE_NEXT (page 196). To delete records in bulk by record number,
construct the key DBT using DB_MULTIPLE_RECNO_WRITE_INIT (page 200) and
DB_MULTIPLE_RECNO_WRITE_NEXT (page 201) with a data size of zero.

A successful bulk delete operation is logically equivalent to a loop through each key/data
pair, performing a DB->del() (page 23) for each one.

See the DBT and Bulk Operations (page 189) for more information on working with bulk
updates.

The DB_MULTIPLE flag may only be used alone.
DB_MULTIPLE_KEY

Delete multiple data items using keys and data from the buffer to which the key parameter
refers.

To delete records in bulk with the btree or hash access methods, construct a

bulk buffer in the key DBT using DB_MULTIPLE_WRITE_INIT (page 195) and
DB_MULTIPLE_KEY_WRITE_NEXT (page 198). To delete records in bulk with

the recno or hash access methods, construct a bulk buffer in the key DBT using
DB_MULTIPLE_RECNO_WRITE_INIT (page 200) and DB_MULTIPLE_RECNO_WRITE_NEXT (page
201).

See the DBT and Bulk Operations (page 189) for more information on working with bulk
updates.

The DB_MULTIPLE_KEY flag may only be used alone.

The DB->del() method may fail and return one of the following non-zero errors:

DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1.

An attempt was made to add a record to a constrained database, and the key used for
that record does not exist in the foreign key database.

DB_FOREIGN_ABORT (page 11) was declared for a foreign key database, and then
subsequently a record was deleted from the foreign key database without first removing
it from the constrained secondary database.

DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

2/17/2015

DB C API Page 24



Library Version 12.1.6.1 The DB Handle

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.
DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.
EACCES

An attempt was made to modify a read-only database.
EINVAL

An invalid flag value or parameter was specified.

Class

DB

See Also

Database and Related Methods (page 3)

2/17/2015

DB C API Page 25



Library Version 12.1.6.1 The DB Handle

DB->err()

#tinclude <db.h>

void
DB->err(DB *db, int error, const char *fmt, ...);

void
DB->errx(DB *db, const char *fmt, ...);

The DB_ENV->err() (page 220), DB_ENV->errx(), DB->err() and DB->errx() methods
provide error-messaging functionality for applications written using the Berkeley DB library.

The DB->err() and DB_ENV->err() (page 220) methods construct an error message consisting
of the following elements:

An optional prefix string

If no error callback function has been set using the DB_ENV->set_errcall() (page 286)
method, any prefix string specified using the DB_ENV->set_errpfx() (page 290) method,
followed by two separating characters: a colon and a <space> character.

An optional printf-style message

The supplied message fmt, if non-NULL, in which the ANSI C X3.159-1989 (ANSI C) printf
function specifies how subsequent parameters are converted for output.

A separator
Two separating characters: a colon and a <space> character.
A standard error string

The standard system or Berkeley DB library error string associated with the error value, as
returned by the db_strerror (page 329) method.

The DB->errx() and DB_ENV->errx() methods are the same as the DB->err() and DB_ENV-
>err() (page 220) methods, except they do not append the final separator characters and
standard error string to the error message.

This constructed error message is then handled as follows:

If an error callback function has been set (see DB->set_errcall() (page 101) and DB_ENV-

>set_errcall() (page 286)), that function is called with two parameters: any prefix string

specified (see DB->set_errpfx() (page 105) and DB_ENV->set_errpfx() (page 290)) and the
error message.

If a C library FILE * has been set (see DB->set_errfile() (page 103) and DB_ENV-
>set_errfile() (page 288)), the error message is written to that output stream.

If none of these output options have been configured, the error message is written to stderr,
the standard error output stream.

2/17/2015

DB C API Page 26



Library Version 12.1.6.1 The DB Handle

Parameters

error

The error parameter is the error value for which the DB_ENV->err() (page 220) and DB-
>err() methods will display an explanatory string.

fmt

The fmt parameter is an optional printf-style message to display.
Class

DB

See Also
Database and Related Methods (page 3)

2/17/2015 DB C API Page 27



Library Version 12.1.6.1 The DB Handle

DB->eXxists()

#tinclude <db.h>

int
DB->exists(DB *db, DB_TXN *txnid, DBT *key, u_int32_t flags);

The DB->exists() method returns whether the specified key appears in the database.

The DB->exists() method will return DB_NOTFOUND if the specified key is not in the
database. The DB->exists() method will return DB_KEYEMPTY if the database is a Queue
or Recno database and the specified key exists, but was never explicitly created by the
application or was later deleted.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 627); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 619); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected.

key
The key DBT operated on.
flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more
of the following values:

e DB_READ_COMMITTED

Configure a transactional read operation to have degree 2 isolation (the read is not
repeatable).

e DB_READ_UNCOMMITTED

Configure a transactional read operation to have degree 1 isolation, reading modified
but not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not
specified when the underlying database was opened.

« DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured.
Setting this flag can eliminate deadlock during a read-modify-write cycle by acquiring the
write lock during the read part of the cycle so that another thread of control acquiring a
read lock for the same item, in its own read-modify-write cycle, will not result in deadlock.

2/17/2015 DB C API Page 28


../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 12.1.6.1 The DB Handle

Because the DB->exists () method will not hold locks across Berkeley DB calls in non-
transactional operations, the DB_RMW flag to the DB->exists () call is meaningful only in
the presence of transactions.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 29



Library Version 12.1.6.1 The DB Handle

DB->fd()
#include <db.h>
int
DB->fd(DB *db, int *fdp);
The DB->fd () method provides access to a file descriptor representative of the underlying
database. A file descriptor referring to the same file will be returned to all processes that call
DB->open() (page 70) with the same file parameter.
This file descriptor may be safely used as a parameter to the fcntl(2) and flock(2) locking
functions.
The DB->fd() method only supports a coarse-grained form of locking. Applications should
instead use the Berkeley DB lock manager where possible.
The DB->fd() method returns a non-zero error value on failure and 0 on success.
Parameters
fdp
The fdp parameter references memory into which the current file descriptor is copied.
Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 30



Library Version 12.1.

6.1 The DB Handle

DB->get()

#include <db.h>

int
DB->get (DB *db,
DB_TXN *txnid, DBT *key, DBT *data, u_int32_t flags);

int
DB->pget (DB *db,
DB_TXN *txnid, DBT *key, DBT *pkey, DBT *data, u_int32_t flags);

The DB->get () method retrieves key/data pairs from the database. The address and length of
the data associated with the specified key are returned in the structure to which data refers.

In the presence of duplicate key values, DB->get () will return the first data item for the
designated key. Duplicates are sorted by:

« Their sort order, if a duplicate sort function was specified.
« Any explicit cursor designated insertion.
« By insert order. This is the default behavior.

Retrieval of duplicates requires the use of cursor operations. See DBcursor->get() (page
171) for details.

When called on a database that has been made into a secondary index using the DB-
>associate() (page 6) method, the DB->get() and DB->pget () methods return the key
from the secondary index and the data item from the primary database. In addition, the
DB->pget () method returns the key from the primary database. In databases that are not
secondary indices, the DB->pget () method will always fail.

The DB->get () method will return DB_NOTFOUND if the specified key is not in the database.
The DB->get () method will return DB_KEYEMPTY if the database is a Queue or Recno
database and the specified key exists, but was never explicitly created by the application or
was later deleted. Unless otherwise specified, the DB->get () method returns a non-zero error
value on failure and 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 627); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 619); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected.

key
The key DBT operated on.

2/17/2015

DB C API Page 31


../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 12.1.6.1 The DB Handle

If DB_DBT_PARTIAL is set for the DBT used for this parameter, and if the flags parameter is
not set to DB_CONSUME DB_CONSUME_WAIT, or DB_SET_RECNO, then this method will fail and
return EINVAL.

pkey

The pkey parameter is the return key from the primary database. If DB_DBT_PARTIAL is set for
the DBT used for this parameter, then this method will fail and return EINVAL.

data

The data DBT operated on.

flags

The flags parameter must be set to 0 or one of the following values:

e DB_CONSUME
Return the record number and data from the available record closest to the head of the
queue, and delete the record. The record number will be returned in key, as described
in DBT. The data will be returned in the data parameter. A record is available if it is not
deleted and is not currently locked. The underlying database must be of type Queue for
DB_CONSUME to be specified.

e DB_CONSUME_WAIT

The DB_CONSUME_WAIT flag is the same as the DB_CONSUME flag, except that if the Queue
database is empty, the thread of control will wait until there is data in the queue before
returning. The underlying database must be of type Queue for DB_CONSUME_WAIT to be
specified.

If lock or transaction timeouts have been specified, the DB->get () method with the
DB_CONSUME_WAIT flag may return DB_LOCK_NOTGRANTED. This failure, by itself, does not
require the enclosing transaction be aborted.

e DB_GET_BOTH
Retrieve the key/data pair only if both the key and data match the arguments.
When using a secondary index handle, the DB_GET_BOTH: flag causes:

» the DB->pget() version of this method to retun the secondary key/primary key/data
tuple only if both the primary and secondary keys match the arguments.

» the DB->get () version of this method to result in an error.
« DB_SET_RECNO

Retrieve the specified numbered key/data pair from a database. Upon return, both the key
and data items will have been filled in.

2/17/2015

DB C API Page 32


../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED

Library Version 12.1.6.1 The DB Handle

The data field of the specified key must be a pointer to a logical record number (that is, a
db_recno_t). This record number determines the record to be retrieved.

For DB_SET_RECNO to be specified, the underlying database must be of type Btree, and it
must have been created with the DB_RECNUM flag.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags
parameter:

e DB_IGNORE_LEASE

Return the data item irrespective of the state of master leases. The item will be returned
under all conditions: if master leases are not configured, if the request is made to a client,
if the request is made to a master with a valid lease, or if the request is made to a master
without a valid lease.

e DB_MULTIPLE
Return multiple data items in the buffer to which the data parameter refers.

In the case of Btree or Hash databases, all of the data items associated with the specified
key are entered into the buffer. In the case of Queue, Recno or Heap databases, all of the
data items in the database, starting at, and subsequent to, the specified key, are entered
into the buffer.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying
database, aligned for unsigned integer access, and be a multiple of 1024 bytes in size.

If the buffer size is insufficient, then upon return from the call the size field of the data
parameter will have been set to an estimated buffer size, and the error DB_BUFFER_SMALL
is returned. (The size is an estimate as the exact size needed may not be known until all
entries are read. It is best to initially provide a relatively large buffer, but applications
should be prepared to resize the buffer as necessary and repeatedly call the method.)

The DB_MULTIPLE flag may only be used alone, or with the DB_GET_BOTH and
DB_SET_RECNO options. The DB_MULTIPLE flag may not be used when accessing databases
made into secondary indices using the DB->associate() (page 6) method.

See the DBT and Bulk Operations (page 189) for more information on working with bulk
get.

e DB_READ_COMMITTED

Configure a transactional get operation to have degree 2 isolation (the read is not
repeatable).

e DB_READ_UNCOMMITTED

Configure a transactional get operation to have degree 1 isolation, reading modified but not
yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified
when the underlying database was opened.

2/17/2015

DB C API Page 33



Library Version 12.1.6.1 The DB Handle

+ DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured.
Setting this flag can eliminate deadlock during a read-modify-write cycle by acquiring the
write lock during the read part of the cycle so that another thread of control acquiring a
read lock for the same item, in its own read-modify-write cycle, will not result in deadlock.

Because the DB->get () method will not hold locks across Berkeley DB calls in non-
transactional operations, the DB_RMW flag to the DB->get() call is meaningful only in the
presence of transactions.

Errors

The DB->get () method may fail and return one of the following non-zero errors:
DB_BUFFER_SMALL

The requested item could not be returned due to undersized buffer.
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

DB_LOCK_NOTGRANTED

The DB_CONSUME_WAIT flag was specified, lock or transaction timers were configured and the
lock could not be granted before the wait-time expired.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LEASE_EXPIRED
The operation failed because the site's replication master lease has expired.
DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

2/17/2015

DB C API Page 34



Library Version 12.1.6.1 The DB Handle

DB_SECONDARY_BAD
A secondary index references a nonexistent primary key.
EINVAL
If a record number of 0 was specified; the DB_THREAD flag was specified to the DB-
>open() (page 70) method and none of the DB_DBT_MALLOC, DB_DBT_REALLOC or
DB_DBT_USERMEM flags were set in the DBT; the DB->pget () method was called with a DB
handle that does not refer to a secondary index; or if an invalid flag value or parameter was
specified.

Class
DB

See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 35



Library Version 12.1.6.1 The DB Handle

DB->get_bt_minkey()

#tinclude <db.h>

int
DB->get_bt_minkey (DB *db, u_int32_t *bt_minkeyp);

The DB->get_bt_minkey() method returns the minimum number of key/data pairs
intended to be stored on any single Btree leaf page. This value can be set using the DB-
>set_bt_minkey() (page 92) method.

The DB->get_bt_minkey() method may be called at any time during the life of the
application.

The DB->get_bt_minkey() method returns a non-zero error value on failure and 0 on success.
Parameters
bt_minkeyp

The DB->get_bt_minkey() method returns the minimum number of key/data pairs intended
to be stored on any single Btree leaf page in bt_minkeyp.

Class

DB

See Also

Database and Related Methods (page 3), DB->set_bt_minkey() (page 92)

2/17/2015 DB C API Page 36



Library Version 12.1.6.1 The DB Handle

DB->get_byteswapped()

#tinclude <db.h>

int
DB->get_byteswapped(DB *db, int *isswapped);

The DB->get_byteswapped() method returns whether the underlying database files were
created on an architecture of the same byte order as the current one, or if they were not
(that is, big-endian on a little-endian machine, or vice versa). This information may be used to
determine whether application data needs to be adjusted for this architecture or not.

The DB->get_byteswapped() method may not be called before the DB->open() (page 70)
method is called.

The DB->get_byteswapped() method returns a non-zero error value on failure and 0 on
success.

Parameters

isswapped

If the underlying database files were created on an architecture of the same byte order as the
current one, 0 is stored into the memory location referenced by isswapped. If the underlying
database files were created on an architecture of a different byte order as the current one, 1
is stored into the memory location referenced by isswapped.

Errors

The DB->get_byteswapped() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called before DB->open() (page 70) was called; or if an invalid flag value
or parameter was specified.

Class

DB

See Also

Database and Related Methods (page 3)

2/17/2015

DB C API Page 37



Library Version 12.1.6.1 The DB Handle

DB->get_cachesize()

#include <db.h>
int
DB->get_cachesize(DB *db,
u_int32_t *gbytesp, u_int32_t *bytesp, int *ncachep);

The DB->get_cachesize() method returns the current size and composition of the cache.
These values may be set using the DB->set_cachesize() (page 95) method.

The DB->get_cachesize() method may be called at any time during the life of the
application.

The DB->get_cachesize() method returns a non-zero error value on failure and 0 on success.
Parameters
gbytesp

The gbytesp parameter references memory into which the gigabytes of memory in the cache
is copied.

bytesp

The bytesp parameter references memory into which the additional bytes of memory in the
cache is copied.

ncachep

The ncachep parameter references memory into which the number of caches is copied.

Class
DB

See Also

Database and Related Methods (page 3), DB->set_cachesize() (page 95)

2/17/2015 DB C API Page 38



Library Version 12.1.6.1

The DB Handle

DB->get_create_dir()

#tinclude <db.h>

int
DB->get_create_dir(DB *db, const char **dirp);

Determine which directory a database file will be created in or was found in.
The DB->get_create_dir() method may be called at any time.

The DB->get_create_dir() method returns a non-zero error value on failure and 0 on
success.

Parameters
dirp

The dirp will be set to the directory specified in the call to DB->set_create_dir() (page
97) method on this handle or to the directory that the database was found in after DB-
>open() (page 70) has been called.

Errors

The DB->get_create_dir() method may fail and return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.
Class
DB

See Also

Database and Related Methods (page 3)

2/17/2015

DB C API

Page 39



Library Version 12.1.6.1 The DB Handle

DB->get_dbname()

#tinclude <db.h>

int
DB->get_dbname(DB *db, const char **filenamep, const char **dbnamep);

The DB->get_dbname () method returns the filename and database name used by the DB
handle.

The DB->get_dbname () method returns a non-zero error value on failure and 0 on success.

Parameters
filenamep

The filenamep parameter references memory into which a pointer to the current filename is
copied.

dbnamep

The dbnamep parameter references memory into which a pointer to the current database
name is copied.

Class
DB

See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 40



Library Version 12.1.6.1 The DB Handle

DB->get_encrypt_flags()

#tinclude <db.h>

int
DB->get_encrypt_flags(DB *db, u_int32_t *flagsp);

The DB->get_encrypt_flags() method returns the encryption flags. This flag can be set
using the DB->set_encrypt() (page 100) method.

The DB->get_encrypt_flags() method may be called at any time during the life of the
application.

The DB->get_encrypt_flags() method returns a non-zero error value on failure and 0 on
success.

Parameters

flagsp

The DB->get_encrypt flags() method returns the encryption flags in flagsp.
Class

DB
See Also

Database and Related Methods (page 3), DB->set_encrypt() (page 100)

2/17/2015 DB C API Page 41



Library Version 12.1.6.1 The DB Handle

DB->get_errfile()

#tinclude <db.h>

void
DB->get_errfile(DB *db, FILE **errfilep);

The DB->get_errfile() method returns the FILE *, as set by the DB->set_errfile() (page
103) method.

The DB->get_errfile() method may be called at any time during the life of the application.
Parameters

errfilep

The DB->get_errfile() method returns the FILE * in errfilep.
Class

DB
See Also

Database and Related Methods (page 3), DB->set_errfile() (page 103)

2/17/2015 DB C API Page 42



Library Version 12.1.6.1 The DB Handle

DB->get_errpfx()
#include <db.h>
void DB->get_errpfx(DB *db, const char **errpfxp);
The DB->get_errpfx() method returns the error prefix.
The DB->get_errpfx() method may be called at any time during the life of the application.
Parameters
errpfxp
The DB->get_errpfx() method returns a reference to the error prefix in errpfxp.
Class
DB
See Also

Database and Related Methods (page 3), DB->set_errpfx() (page 105)

2/17/2015 DB C API Page 43



Library Version 12.1.6.1 The DB Handle

DB->get_flags()

#tinclude <db.h>

int
DB->get flags(DB *db, u_int32_t *flagsp);

The DB->get_flags() method returns the current database flags as set by the DB-
>set_flags() (page 108) method.

The DB->get_flags() method may be called at any time during the life of the application.
The DB->get_flags() method returns a non-zero error value on failure and 0 on success.
Parameters
flagsp
The DB->get_flags() method returns the current flags in flagsp.
Class
DB
See Also

Database and Related Methods (page 3), DB->set_flags() (page 108)

2/17/2015 DB C API Page 44



Library Version 12.1.6.1 The DB Handle

DB->get_h_ffactor()

#tinclude <db.h>

int
DB->get_h_ffactor(DB *db, u_int32_t *h_ffactorp);

The DB->get_h_ffactor() method returns the hash table density as set by the DB-

>set_h_ffactor() (page 116) method. The hash table density is the number of items that
Berkeley DB tries to place in a hash bucket before splitting the hash bucket.

The DB->get_h_ffactor() method may be called at any time during the life of the
application.

The DB->get_h_ffactor() method returns a non-zero error value on failure and 0 on success.
Parameters

h_ffactorp

The DB->get_h_ffactor() method returns the hash table density in h_ffactorp.
Class

DB
See Also

Database and Related Methods (page 3), DB->set_h_ffactor() (page 116)

2/17/2015 DB C API Page 45



Library Version 12.1.6.1 The DB Handle

DB->get_h_nelem()

#tinclude <db.h>

int
DB->get_h_nelem(DB *db, u_int32_t *h_nelemp);

The DB->get_h_nelem() method returns the estimate of the final size of the hash table as set
by the DB->set_h_nelem() (page 118) method.

The DB->get_h_nelem() method may be called at any time during the life of the application.

The DB->get_h_nelem() method returns a non-zero error value on failure and 0 on success.
Parameters

h_nelemp

The DB->get_h_nelem() method returns the estimate of the final size of the hash table in
h_nelemp.

Class

DB

See Also

Database and Related Methods (page 3), DB->set_h_nelem() (page 118)

2/17/2015 DB C API Page 46



Library Version 12.1.6.1 The DB Handle

DB->get__heapsize()

#include <db.h>
int
DB->get_heapsize(DB *db, u_int32_t *gbytesp, u_int32_t *bytesp);

Used when the underlying database is configured to use the Heap access method. This method
returns the maximum size of the database's heap file. This value may be set using the DB-
>set_heapsize() (page 119) method.

The DB->get_heapsize() method may be called at any time during the life of the
application.

The DB->get_heapsize() method returns a non-zero error value on failure and 0 on success.

Parameters

gbytesp

The gbytesp parameter references memory into which is copied the maximum number of
gigabytes in the heap.

bytesp

The bytesp parameter references memory into which is copied the additional bytes in the
heap.

Class

DB

See Also

Database and Related Methods (page 3), DB->set_heapsize() (page 119)

2/17/2015

DB C API Page 47



Library Version 12.1.6.1 The DB Handle

DB->get_heap_regionsize()

#tinclude <db.h>

int
DB->get_heap_regionsize(DB *db, u_int32_t *npagesp);

Used when the underlying database is configured to use the Heap access method. This
method returns the number of pages in a region. This value may be set using the DB-
>set_heap_regionsize() (page 121) method.

The DB->get_heap_regionsize() method may be called at any time during the life of the
application.

The DB->get_heap_regionsize() method returns a non-zero error value on failure and 0 on
success.

Parameters

npagesp

The npagesp parameter references memory into which is copied the number of pages in a
region.

Class
DB

See Also

Database and Related Methods (page 3), DB->set_heap_regionsize() (page 121)

2/17/2015 DB C API Page 48



Library Version 12.1.6.1 The DB Handle

DB->get_lk_exclusive()
#include <db.h>

int
DB->get_lk_exclusive(DB *db, int *onoff, int *nowait);

Returns whether the database handle is configured to obtain a write lock on the entire
database. This can be set using the DB->set_lk_exclusive() (page 122) method.

The DB->get_1k_exclusive() method may be called at any time during the life of the
application.

The DB->get_1k_exclusive() always returns o.

Parameters
onoff

Indicates whether the handle is configured for exclusive database locking. If 9, it is not
configured for exclusive locking. If 1, then it is configured for exclusive locking.

nowait

Indicates whether the handle is configured for immediate locking. If @, then the locking
operation will block until it can obtain an exclusive database lock. If 1, then the locking
operation will error out if it cannot immediately obtain an exclusive lock.

Class
DB

See Also

Database and Related Methods (page 3), DB->set_lk_exclusive() (page 122)

2/17/2015 DB C API Page 49



Library Version 12.1.6.1 The DB Handle

DB->get_lorder()

#tinclude <db.h>

int
DB->get_lorder(DB *db, int *lorderp);

The DB->get_lorder() method returns the database byte order; a byte order of 4,321
indicates a big endian order, and a byte order of 1,234 indicates a little endian order. This
value is set using the DB->set_lorder() (page 124) method.

The DB->get_lorder() method may be called at any time during the life of the application.
The DB->get_lorder() method returns a non-zero error value on failure and 0 on success.
Parameters
lorderp
The DB->get_lorder() method returns the database byte order in lorderp.
Class
DB
See Also

Database and Related Methods (page 3), DB->set_lorder() (page 124)

2/17/2015 DB C API Page 50



Library Version 12.1.6.1 The DB Handle

DB->get_msgfile()
#include <db.h>

void
DB->get_msgfile(DB *db, FILE **msgfilep);

The DB->get_msgfile() method returns the FILE * used to output informational or

statistical messages. This file handle is configured using the DB->set_msgfile() (page 127)
method.

The DB->get_msgfile() method may be called at any time during the life of the application
Parameters

msdfilep

The DB->get_msgfile() method returns the FILE * in msgfilep.
Class
DB

See Also

Database and Related Methods (page 3), DB->set_msgfile() (page 127)

2/17/2015 DB C API

Page 51



Library Version 12.1.6.1 The DB Handle

DB->get_multiple()

#tinclude <db.h>

int
DB->get_multiple(DB *db);

This method returns non-zero if the DB handle references a physical file supporting multiple
databases, and 0 otherwise.

In this case, the DB handle is a handle on a database whose key values are the names of the
databases stored in the physical file and whose data values are opaque objects. No keys or
data values may be modified or stored using the database handle.

This method may not be called before the DB->open() (page 70) method is called.
Class

DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 52



Library Version 12.1.6.1 The DB Handle

DB->get_open_flags()

#tinclude <db.h>

int
DB->get_open_flags(DB *db, u_int32_t *flagsp);

The DB->get_open_flags() method returns the current open method flags. That is, this
method returns the flags that were specified when DB->open() (page 70) was called.

The DB->get_open_flags() method may not be called before the DB->open() method is
called.

The DB->get_open_flags() method returns a non-zero error value on failure and 0 on
success.

Parameters

flagsp

The DB->get_open_flags() method returns the current open method flags in flagsp.
Class

DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 53



Library Version 12.1.6.1 The DB Handle

DB->get_partition_callback()

#include <db.h>

int

DB->get_partition_callback(DB *db, u_int32_t *partsp,
u_int32_t (**callback_fcn) (DB *dbp, DBT *key);

The DB->get_partition_callback() method returns the database partitioning callback as
set by the DB->set_partition() (page 129) method.

The DB->get_partition_callback() method may be called at any time during the life of
the application.

The DB->get_partition_callback() method returns a non-zero error value on failure and 0
on success.

Parameters
partsp
The partsp parameter returns the number of partitions used by the database.
callback_fcn
The callback_fcn parameter returns the partitioning callback.
Class
DB
See Also

Database and Related Methods (page 3), DB->set_partition() (page 129)

2/17/2015 DB C API Page 54



Library Version 12.1.6.1 The DB Handle

DB->get_partition_dirs()

#tinclude <db.h>

int
DB->get_partition_dirs(DB *db, const char ***dirsp);

Identify the directories used to store the database partitions.
The DB->get_partition_dirs() method may be called at any time.

The DB->get_partition_dirs() method returns a non-zero error value on failure and 0 on
success.

Parameters
dirsp

The dirsp will be set to the array of directories specified in the call to DB-
>set_partition_dirs() (page 131) method on this handle or to the directoreies that the
database partitions were found in after DB->open() (page 70) has been called.

Errors

The DB->get_partition_dirs() method may fail and return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.
Class

DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 55



Library Version 12.1.6.1 The DB Handle

DB->get_partition_keys()

#tinclude <db.h>

int
DB->get_partition_keys(DB *db, u_int32_t *partsp, DBT *keysp);

The DB->get_partition_keys() method returns the range of keys used to specify the
values placed in each of a database's partitions. This information is set using the DB-
>set_partition() (page 129) method.

The DB->get_partition_keys() method may be called at any time during the life of the
application.

The DB->get_partition_keys() method returns a non-zero error value on failure and 0 on
success.

Parameters

partsp

The partsp parameter returns the number of partitions in the database.

keysp

The keysp parameter returns the set of keys used to place values in the database partitions.
Class

DB
See Also

Database and Related Methods (page 3), DB->set_partition() (page 129)

2/17/2015 DB C API Page 56



Library Version 12.1.6.1 The DB Handle

DB->get_pagesize()

#tinclude <db.h>

int
DB->get pagesize(DB *db, u_int32_t *pagesizep);

The DB->get_pagesize() method returns the database’s current page size, as set by the DB-
>set_pagesize() (page 128) method. Note that if DB->set_pagesize() was not called by
your application, then the default pagesize is selected based on the underlying filesystem [/0
block size. If you call DB->get pagesize() before you have opened the database, the value
returned by this method is therefore the underlying filesystem 1/0 block size.

The DB->get_pagesize() method may be called only after the database has been opened.
The DB->get_pagesize() method returns a non-zero error value on failure and 0 on success.
Parameters
pagesizep
The DB->get_pagesize() method returns the page size in pagesizep.
Class
DB
See Also

Database and Related Methods (page 3), DB->set_pagesize() (page 128)

2/17/2015 DB C API Page 57



Library Version 12.1.6.1 The DB Handle

DB->get_priority()

#tinclude <db.h>

int
DB->get_priority(DB *db, DB_CACHE_PRIORITY *priorityp);

The DB->get_priority() method returns the cache priority for pages referenced by the DB
handle. This priority value is set using the DB->set_priority() (page 132) method.

The DB->get_priority() method may be called only after the database has been opened.

The DB->get_priority() method returns a non-zero error value on failure and 0 on success.
Parameters

priorityp

The DB->get_priority() method returns a reference to the cache priority in priorityp. See
DB->set_priority() (page 132) for a list of possible priorities.

Class

DB
See Also

Database and Related Methods (page 3), DB->set_priority() (page 132)

2/17/2015 DB C API Page 58



Library Version 12.1.6.1 The DB Handle

DB->get_(q_extentsize()

#tinclude <db.h>

int

DB->get_q_extentsize(DB *db, u_int32_t *extentsizep);
The DB->get_q_extentsize() method returns the number of pages in an extent. This value
is used only for Queue databases and is set using the DB->set_q_extentsize() (page 133)
method.

The DB->get_q_extentsize() method may be called only after the database has been
opened.

The DB->get_q_extentsize() method returns a non-zero error value on failure and 0 on
success.

Parameters
extentsizep

The DB->get_q_extentsize() method returns the number of pages in an extent in
extentsizep. If used on a handle that has not yet been opened, @ is returned.

Class

DB
See Also

Database and Related Methods (page 3), DB->set_q_extentsize() (page 133)

2/17/2015 DB C API Page 59



Library Version 12.1.6.1 The DB Handle

DB->get_re_delim()

#tinclude <db.h>

int
DB->get_re_delim(DB *db, int *delimp);

The DB->get_re_delim() method returns the delimiting byte, which is used to mark the end
of a record in the backing source file for the Recno access method. This value is set using the
DB->set_re_delim() (page 134) method.

The DB->get_re_delim() method may be called only after the database has been opened.

The DB->get_re_delim() method returns a non-zero error value on failure and 0 on success.

Parameters
delimp

The DB->get_re_delim() method returns the delimiting byte in delimp. If this method is
called on a handle that has not yet been opened, then the default delimiting byte is returned.
See DB->set_re_delim() (page 134) for details.

Class
DB

See Also
Database and Related Methods (page 3), DB->set_re_delim() (page 134)

2/17/2015 DB C API Page 60



Library Version 12.1.6.1 The DB Handle

DB->get_re_len()

#tinclude <db.h>

int
DB->get_re_len(DB *db, u_int32_t *re_lenp);

The DB->get_re_len() method returns the length of the records held in a Queue access
method database. This value can be set using the DB->set_re_len() (page 135) method.

The DB->get_re_len() method may be called only after the database has been opened.

The DB->get_re_len() method returns a non-zero error value on failure and 0 on success.
Parameters

re_lenp

The DB->get_re_len() method returns the record length in re_lenp. If the record length has
never been set using DB->set_re_len() (page 135), then 0 is returned.

Class
DB
See Also

Database and Related Methods (page 3), DB->set_re_len() (page 135)

2/17/2015 DB C API Page 61



Library Version 12.1.6.1 The DB Handle

DB->get_re_pad()

#tinclude <db.h>

int
DB->get_re_pad(DB *db, int *re_padp);

The DB->get_re_pad() method returns the pad character used for short, fixed-length
records used by the Queue and Recno access methods. This character is set using the DB-
>set_re_pad() (page 136) method.

The DB->get_re_pad() method may be called only after the database has been opened.

The DB->get_re_pad() method returns a non-zero error value on failure and 0 on success.

Parameters

re_padp

The DB->get_re_pad() method returns the pad character in re_padp. If used on a
handle that has not yet been opened, the default pad character is returned. See the DB-
>set_re_pad() (page 136) method description for what that default value is.

Class
DB

See Also

Database and Related Methods (page 3), DB->set_re_pad() (page 136)

2/17/2015 DB C API Page 62



Library Version 12.1.6.1 The DB Handle

DB->get_re_source()
#tinclude <db.h>

int
DB->get_re_source(DB *db, const char **sourcep);

The DB->get_re_source() method returns the source file used by the Recno access method.
This file is configured for the Recno access method using the DB->set_re_source() (page 137)
method.

The DB->get_re_source() method may be called only after the database has been opened.
The DB->get_re_source() method returns a non-zero error value on failure and 0 on success.
Parameters
sourcep
The DB->get_re_source() method returns a reference to the source file in sourcep.
Class
DB
See Also

Database and Related Methods (page 3), DB->set_re_source() (page 137)

2/17/2015 DB C API Page 63



Library Version 12.1.6.1 The DB Handle

DB->get_type()

#tinclude <db.h>

int
DB->get_type(DB *db, DBTYPE *type);

The DB->get_type() method returns the type of the underlying access method (and file
format). The type value is one of DB_BTREE, DB_HASH, DB_RECNO, or DB_QUEUE. This value
may be used to determine the type of the database after a return from DB->open() (page
70) with the type parameter set to DB_UNKNOWN.

The DB->get_type() method may not be called before the DB->open() (page 70) method is
called.

The DB->get_type() method returns a non-zero error value on failure and 0 on success.
Parameters

type

The type parameter references memory into which the type of the underlying access method
is copied.

Errors
The DB->get_type() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called before DB->open() (page 70) was called; or if an invalid flag value
or parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 64



Library Version 12.1.6.1 The DB Handle

DB->join()
#include <db.h>
int
DB->join(DB *primary,
DBC **curslist, DBC **dbcp, u_int32_t flags);

The DB->join() method creates a specialized join cursor for use in performing equality or
natural joins on secondary indices. For information on how to organize your data to use this
functionality, see Equality join.

The DB->join() method is called using the DB handle of the primary database.

The join cursor supports only the DBcursor->get() (page 171) and DBcursor->close() (page
164) cursor functions:

o DBcursor->get() (page 171)

Iterates over the values associated with the keys to which each item in curslist was
initialized. Any data value that appears in all items specified by the curslist parameter
is then used as a key into the primary, and the key/data pair found in the primary is
returned. The flags parameter must be set to 0 or the following value:

« DB_JOIN_ITEM

Do not use the data value found in all the cursors as a lookup key for the primary, but
simply return it in the key parameter instead. The data parameter is left unchanged.

In addition, the following flag may be set by bitwise inclusively OR'ing it into the flags
parameter:

e DB_READ_UNCOMMITTED

Configure a transactional join operation to have degree 1 isolation, reading modified but
not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not
specified when the underlying database was opened.

« DB_RMW

Acquire write locks instead of read locks when doing the read, if locking is configured.
Setting this flag can eliminate deadlock during a read-modify-write cycle by acquiring the
write lock during the read part of the cycle so that another thread of control acquiring

a read lock for the same item, in its own read-modify-write cycle, will not result in
deadlock.

o DBcursor->close() (page 164)

Close the returned cursor and release all resources. (Closing the cursors in curslist is the
responsibility of the caller.)

The DB->join() method returns a non-zero error value on failure and 0 on success.

2/17/2015 DB C API Page 65


../../programmer_reference/am_cursor.html#am_join

Library Version 12.1.6.1 The DB Handle

Parameters

curslist

The curslist parameter contains a NULL terminated array of cursors. Each cursor must have
been initialized to refer to the key on which the underlying database should be joined.
Typically, this initialization is done by a DBcursor->get() (page 171) call with the DB_SET

flag specified. Once the cursors have been passed as part of a curslist, they should not be
accessed or modified until the newly created join cursor has been closed, or else inconsistent
results may be returned.

Joined values are retrieved by doing a sequential iteration over the first cursor in the curslist
parameter, and a nested iteration over each secondary cursor in the order they are specified
in the curslist parameter. This requires database traversals to search for the current datum in
all the cursors after the first. For this reason, the best join performance normally results from
sorting the cursors from the one that refers to the least number of data items to the one that
refers to the most. By default, DB->join() does this sort on behalf of its caller.

For the returned join cursor to be used in a transaction-protected manner, the cursors listed in
curslist must have been created within the context of the same transaction.

dbcp

The newly created join cursor is returned in the memory location to which dbcp refers.
flags

The flags parameter must be set to 0 or the following value:

+ DB_JOIN_NOSORT

Do not sort the cursors based on the number of data items to which they refer. If the data
are structured so that cursors with many data items also share many common elements,
higher performance will result from listing those cursors before cursors with fewer data
items; that is, a sort order other than the default. The DB_JOIN_NOSORT flag permits
applications to perform join optimization prior to calling the DB->join() method.

Errors

The DB->join() method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

2/17/2015

DB C API Page 66



Library Version 12.1.6.1 The DB Handle

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EINVAL

If cursor methods other than DBcursor->get() (page 171) or DBcursor->close() (page 164)
were called; or if an invalid flag value or parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 67



Library Version 12.1.6.1 The DB Handle

DB->key_range()

#include <db.h>

int
DB->key range(DB *db, DB_TXN *txnid,
DBT *key, DB_KEY_RANGE *key range, u_int32_t flags);

The DB->key_range() method returns an estimate of the proportion of keys that are less
than, equal to, and greater than the specified key. The underlying database must be of type
Btree.

The DB->key_range() method fills in a structure of type DB_KEY_RANGE. The following data
fields are available from the DB_KEY_RANGE structure:

o double less;
A value between 0 and 1, the proportion of keys less than the specified key.
« double equal;
A value between 0 and 1, the proportion of keys equal to the specified key.
o double greater;
A value between 0 and 1, the proportion of keys greater than the specified key.

Values are in the range of 0 to 1; for example, if the field less is 0.05, 5% of the keys in the
database are less than the key parameter. The value for equal will be zero if there is no
matching key, and will be non-zero otherwise.

The DB->key_range() method returns a non-zero error value on failure and 0 on success.

Parameters
txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 627); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 619); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected. The DB->key_range() method does not retain the locks it
acquires for the life of the transaction, so estimates may not be repeatable.

key
The key DBT operated on.
key_range

The estimates are returned in the key_range parameter, which contains three elements of
type double: less, equal, and greater. Values are in the range of 0 to 1; for example, if the

2/17/2015 DB C API Page 68



Library Version 12.1.6.1 The DB Handle

field less is 0.05, 5% of the keys in the database are less than the key parameter. The value
for equal will be zero if there is no matching key, and will be non-zero otherwise.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DB->key_range() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_Llk_exclusive() (page
122) for more information.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.
EINVAL

If the underlying database was not of type Btree; or if an invalid flag value or parameter was
specified.

Class

DB

See Also

Database and Related Methods (page 3)

2/17/2015

DB C API Page 69



Library Version 12.1.6.1 The DB Handle

DB->open()

#include <db.h>

int
DB->open(DB *db, DB_TXN *txnid, const char *file,
const char *database, DBTYPE type, u_int32 t flags, int mode);

The DB->open() method opens the database represented by the file and database.

The currently supported Berkeley DB file formats (or access methods) are Btree, Hash, Heap,
Queue, and Recno. The Btree format is a representation of a sorted, balanced tree structure.
The Hash format is an extensible, dynamic hashing scheme. The Queue format supports fast
access to fixed-length records accessed sequentially or by logical record number. The Recno
format supports fixed- or variable-length records, accessed sequentially or by logical record
number, and optionally backed by a flat text file.

Storage and retrieval for the Berkeley DB access methods are based on key/data pairs; see
DBT for more information.

Calling DB->open() is a relatively expensive operation, and maintaining a set of open
databases will normally be preferable to repeatedly opening and closing the database for each
new query.

The DB->open() method returns a non-zero error value on failure and 0 on success. If DB-
>open() fails, the DB->close() (page 13) method must be called to discard the DB handle.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 627); if the operation is part

of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DB_ENV->cdsgroup_begin() (page 619); otherwise NULL. If no transaction handle is specified,
but the DB_AUTO_COMMIT flag is specified, the operation will be implicitly transaction
protected. Note that transactionally protected operations on a DB handle requires the DB
handle itself be transactionally protected during its open. Also note that the transaction must
be committed before the handle is closed; see Berkeley DB handles for more information.

file

The file parameter is used as the name of an underlying file that will be used to back the
database; see File naming for more information.

In-memory databases never intended to be preserved on disk may be created by setting the
file parameter to NULL. Whether other threads of control can access this database is driven
entirely by whether the database parameter is set to NULL.

When using a Unicode build on Windows (the default), the file argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

2/17/2015

DB C API Page 70


../../programmer_reference/program_scope.html
../../programmer_reference/env_naming.html

Library Version 12.1.6.1 The DB Handle

database

The database parameter is optional, and allows applications to have multiple databases in a
single file. Although no database parameter needs to be specified, it is an error to attempt
to open a second database in a file that was not initially created using a database name.
Further, the database parameter is not supported by the Queue or Heap format. Finally, when
opening multiple databases in the same physical file, it is important to consider locking and
memory cache issues; see Opening multiple databases in a single file for more information.

If both the database and file parameters are NULL, the database is strictly temporary and
cannot be opened by any other thread of control. Thus the database can only be accessed by
sharing the single database handle that created it, in circumstances where doing so is safe.

If the database parameter is not set to NULL, the database can be opened by other threads
of control and will be replicated to client sites in any replication group, regardless of whether
the file parameter is set to NULL.

type

The type parameter is of type DBTYPE, and must be set to one of DB_BTREE, DB_HASH,
DB_HEAP, DB_QUEUE, DB_RECNO, or DB_UNKNOWN. If type is DB_UNKNOWN, the database must
already exist and DB->open () will automatically determine its type. The DB->get_type() (page
64) method may be used to determine the underlying type of databases opened using
DB_UNKNOWN.

It is an error to specify the incorrect type for a database that already exists.
flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more
of the following values:

+ DB_AUTO_COMMIT

Enclose the DB->open() call within a transaction. If the call succeeds, the open operation
will be recoverable and all subsequent database modification operations based on this
handle will be transactionally protected. If the call fails, no database will have been
created.

e DB_CREATE

Create the database. If the database does not already exist and the DB_CREATE flag is not
specified, the DB->open() will fail.

« DB_EXCL

Return an error if the database already exists. The DB_EXCL flag is only meaningful when
specified with the DB_CREATE. flag.

e DB_MULTIVERSION

Open the database with support for multiversion concurrency control. This will cause
updates to the database to follow a copy-on-write protocol, which is required to support

2/17/2015

DB C API Page 71


../../programmer_reference/am_opensub.html
../../programmer_reference/transapp_read.html

Library Version 12.1.6.1 The DB Handle

snapshot isolation. The DB_MULTIVERSION flag requires that the database be transactionally
protected during its open and is not supported by the queue format.

DB_NOMMAP

Do not map this database into process memory (see the DB_ENV->set_mp_mmapsize() (page
448) method for further information).

DB_RDONLY

Open the database for reading only. Any attempt to modify items in the database will fail,
regardless of the actual permissions of any underlying files.

DB_READ_UNCOMMITTED

Support transactional read operations with degree 1 isolation. Read operations on the
database may request the return of modified but not yet committed data. This flag must
be specified on all DB handles used to perform dirty reads or database updates, otherwise
requests for dirty reads may not be honored and the read may block.

DB_THREAD

Cause the DB handle returned by DB->open() to be free-threaded; that is, concurrently
usable by multiple threads in the address space. You should use this flag only in the absence
of an encompassing environment.

When opening the database within an encompassing environment, the database inherits
the state of this flag from the environment. That is, if the encompassing environment is
threaded, then the database will also be threaded. Note that it is an error to specify this
flag to the database open if the encompassing environment is not threaded.

Note that this flag is incompatible with the DB->set_lk_exclusive() method.

Be aware that enabling this flag will serialize calls to DB when using the handle across
threads. If concurrent scaling is important to your application we recommend opening
separate handles for each thread (and not specifying this flag), rather than sharing handles
between threads.

DB_TRUNCATE
Physically truncate the underlying file, discarding all previous databases it might have
held. Underlying filesystem primitives are used to implement this flag. For this reason, it is

applicable only to the file and cannot be used to discard databases within a file.

The DB_TRUNCATE flag cannot be lock or transaction-protected, and it is an error to specify
it in a locking or transaction-protected environment.

mode

On Windows systems, the mode parameter is ignored.

2/17/2015

DB C API Page 72



Library Version 12.1.6.1 The DB Handle

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, files created by the
database open are created with mode mode (as described in chmod(2)) and modified by the
process’ umask value at the time of creation (see umask(2)). Created files are owned by the
process owner; the group ownership of created files is based on the system and directory
defaults, and is not further specified by Berkeley DB. System shared memory segments
created by the database open are created with mode mode, unmodified by the process’ umask
value. If mode is 0, the database open will use a default mode of readable and writable by
both owner and group.

Environment Variables

If the database was opened within a database environment, the environment variable
DB_HOME may be used as the path of the database environment home.

DB->open() is affected by any database directory specified using the DB_ENV-
>add_data_dir() (page 206) method, or by setting the "add_data_dir" string in the
environment's DB_CONFIG file.

+ TMPDIR

If the file and dbenv parameters to DB->open() are NULL, the environment variable
TMPDIR may be used as a directory in which to create temporary backing files

Errors

The DB->open() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

ENOENT

The file or directory does not exist.

ENOENT

A nonexistent re_source file was specified.

DB_OLD_VERSION

The database cannot be opened without being first upgraded.

2/17/2015

DB C API Page 73


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB Handle

DB_META_CHKSUM_FAIL

Checksum mismatch detected on a database metadata page. Either the database is corrupted
or the file is not a Berkeley DB database file.

EEXIST
DB_CREATE and DB_EXCL were specified and the database exists.
EINVAL

If an unknown database type, page size, hash function, pad byte, byte order, or a flag value
or parameter that is incompatible with the specified database was specified; the DB_THREAD
flag was specified and fast mutexes are not available for this architecture; the DB_THREAD
flag was specified to DB->open(), but was not specified to the DB_ENV->open() call for

the environment in which the DB handle was created; a backing flat text file was specified
with either the DB_THREAD flag or the provided database environment supports transaction
processing; a Heap database is in use and DB->set_heapsize() (page 119) was used to set

a heap size that is different from the value used to create the database or an invalid heap
region size was set using DB->set_heap_regionsize() (page 121); or if an invalid flag value or
parameter was specified.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

Class

DB

See Also

Database and Related Methods (page 3)

2/17/2015

DB C API Page 74



Library Version 12.1.6.1 The DB Handle

DB->put()

#tinclude <db.h>

int
DB->put(DB *db,
DB_TXN *txnid, DBT *key, DBT *data, u_int32_t flags);

The DB->put () method stores key/data pairs in the database. The default behavior of the
DB->put() function is to enter the new key/data pair, replacing any previously existing key

if duplicates are disallowed, or adding a duplicate data item if duplicates are allowed. If the
database supports duplicates, the DB->put() method adds the new data value at the end of
the duplicate set. If the database supports sorted duplicates, the new data value is inserted at
the correct sorted location.

Unless otherwise specified, the DB->put () method returns a non-zero error value on failure
and 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 627); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 619); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected.

key
The key DBT operated on.

If creating a new record in a Heap database, the key DBT must be empty. The put method will
return the new record's Record ID (RID) in the key DBT.

data

The data DBT operated on.

flags

The flags parameter must be set to 0 or one of the following values:
e DB_APPEND

Append the key/data pair to the end of the database. For the DB_APPEND flag to be
specified, the underlying database must be a Heap, Queue or Recno database. The record
number allocated to the record is returned in the specified key.

There is a minor behavioral difference between the Recno and Queue access methods for
the DB_APPEND flag. If a transaction enclosing a DB->put () operation with the DB_APPEND
flag aborts, the record number may be reallocated in a subsequent DB_APPEND operation if

2/17/2015 DB C API Page 75



Library Version 12.1.6.1 The DB Handle

you are using the Recno access method, but it will not be reallocated if you are using the
Queue access method.

For a Heap database, if the put operation results in the creation of a new record, then this
flag is required.

DB_NODUPDATA

In the case of the Btree and Hash access methods, enter the new key/data pair only if it
does not already appear in the database.

The DB_NODUPDATA flag may only be specified if the underlying database has been
configured to support sorted duplicates. The DB_NODUPDATA flag may not be specified to
the Queue or Recno access methods.

The DB->put () method will return DB_KEYEXIST (page 182) if DB_NODUPDATA is set and
the key/data pair already appears in the database.

DB_NOOVERWRITE

Enter the new key/data pair only if the key does not already appear in the database. The
DB->put () method call with the DB_NOOVERWRITE flag set will fail if the key already exists
in the database, even if the database supports duplicates.

The DB->put () method will return DB_KEYEXIST (page 182) if DB_NOOVERWRITE is set and
the key already appears in the database.

This enforcement of uniqueness of keys applies only to the primary key. The behavior

of insertions into secondary databases is not affected by the DB_NOOVERWRITE flag. In
particular, the insertion of a record that would result in the creation of a duplicate key in a
secondary database that allows duplicates would not be prevented by the use of this flag.

DB_MULTIPLE

Put multiple data items using keys from the buffer to which the key parameter refers and
data values from the buffer to which the data parameter refers.

To put records in bulk with the btree or hash access methods, construct bulk
buffers in the key and data DBT using DB_MULTIPLE_WRITE_INIT (page 195) and
DB_MULTIPLE_WRITE_NEXT (page 196). To put records in bulk with the recno

or queue access methods, construct bulk buffers in the data DBT as before, but
construct the key DBT using DB_MULTIPLE_RECNO_WRITE_INIT (page 200) and
DB_MULTIPLE_RECNO_WRITE_NEXT (page 201) with a data size of zero.

A successful bulk operation is logically equivalent to a loop through each key/data pair,
performing a DB->put() (page 75) for each one.

See DBT and Bulk Operations (page 189) for more information on working with bulk
updates.

The DB_MULTIPLE flag may only be used alone, or with the DB_OVERWRITE_DUP option.

2/17/2015

DB C API Page 76



Library Version 12.1.6.1 The DB Handle

e DB_MULTIPLE_KEY

Errors

Put multiple data items using keys and data from the buffer to which the key parameter
refers.

To put records in bulk with the btree or hash access methods, construct a single

bulk buffer in the key DBT using DB_MULTIPLE_WRITE_INIT (page 195) and
DB_MULTIPLE_KEY_WRITE_NEXT (page 198). To put records in bulk with the

recno or queue access methods, construct a bulk buffer in the key DBT using
DB_MULTIPLE_RECNO_WRITE_INIT (page 200) and DB_MULTIPLE_RECNO_WRITE_NEXT (page
201).

See DBT and Bulk Operations (page 189) for more information on working with bulk
updates.

The DB_MULTIPLE_KEY flag may only be used alone, or with the DB_OVERWRITE_DUP option.
DB_OVERWRITE_DUP

Ignore duplicate records when overwriting records in a database configured for sorted
duplicates.

Normally, if a database is configured for sorted duplicates, an attempt to put a record that
compares identically to a record already existing in the database will fail. Using this flag
causes the put to silently proceed, without failure.

This flag is extremely useful when performing bulk puts (using the DB_MULTIPLE or
DB_MULTIPLE_KEY flags). Depending on the number of records you are writing to the
database with a bulk put, you may not want the operation to fail in the event that

a duplicate record is encountered. Using this flag along with the DB_MULTIPLE or
DB_MULTIPLE_KEY flags allows the bulk put to complete, even if a duplicate record is
encountered.

This flag is also useful if you are using a custom comparison function that compares only
part of the data portion of a record. In this case, two records can compare equally when,
in fact, they are not equal. This flag allows the put to complete, even if your custom
comparison routine claims the two records are equal.

The DB->put () method may fail and return one of the following non-zero errors:

DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1.

An attempt was made to add a record to a constrained database, and the key used for
that record does not exist in the foreign key database.

DB_FOREIGN_ABORT (page 11) was declared for a foreign key database, and then
subsequently a record was deleted from the foreign key database without first removing
it from the constrained secondary database.

2/17/2015

DB C API Page 77



Library Version 12.1.6.1 The DB Handle

DB_HEAP_FULL

An attempt was made to add or update a record in a Heap database. However, the size of the
database was constrained using the DB->set_heapsize() (page 119) method, and that limit has
been reached.

DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.
EACCES

An attempt was made to modify a read-only database.
EINVAL

If a record number of 0 was specified; an attempt was made to add a record to a fixed-length
database that was too large to fit; an attempt was made to do a partial put on a database not
configured for it (such as a database configured for duplicate records); an attempt was made

to add a record to a secondary index; or if an invalid flag value or parameter was specified.

ENOSPC

A btree exceeded the maximum btree depth (255).
Class

DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 78



Library Version 12.1.6.1 The DB Handle

DB->remove()

#tinclude <db.h>

int
DB->remove(DB *db,
const char *file, const char *database, u_int32_t flags);

The DB->remove () method removes the database specified by the file and database
parameters. If no database is specified, the underlying file represented by file is removed,
incidentally removing all of the databases it contained.

Applications should never remove databases with open DB handles, or in the case of removing

a file, when any database in the file has an open handle. For example, some architectures do

not permit the removal of files with open system handles. On these architectures, attempts to
remove databases currently in use by any thread of control in the system may fail.

The DB->remove () method should not be called if the remove is intended to be
transactionally safe; the DB_ENV->dbremove() (page 216) method should be used instead.

The DB->remove () method may not be called after calling the DB->open() (page 70) method
on any DB handle. If the DB->open() (page 70) method has already been called on a DB handle,
close the existing handle and create a new one before calling DB->remove. ()

The DB handle may not be accessed again after DB->remove() is called, regardless of its
return.

The DB->remove () method returns a non-zero error value on failure and 0 on success.

Parameters

file

The file parameter is the physical file which contains the database(s) to be removed.
database

The database parameter is the database to be removed.

flags

The flags parameter is currently unused, and must be set to 0.

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

DB->remove() is affected by any database directory specified using the DB_ENV-
>add_data_dir() (page 206) method, or by setting the "add_data_dir" string in the
environment's DB_CONFIG file.

2/17/2015

DB C API Page 79


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB Handle

Errors

The DB->remove () method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

ENOENT
The file or directory does not exist.

DB_META_CHKSUM_FAIL

Checksum mismatch detected on a database metadata page. Either the database is corrupted
or the file is not a Berkeley DB database file.

Class
DB

See Also
Database and Related Methods (page 3)

2/17/2015 DB C API Page 80



Library Version 12.1.6.1 The DB Handle

DB->rename()

#tinclude <db.h>

int
DB->rename(DB *db, const char *file,
const char *database, const char *newname, u_int32_t flags);

The DB->rename () method renames the database specified by the file and database
parameters to newname. If no database is specified, the underlying file represented by file is
renamed, incidentally renaming all of the databases it contained.

Applications should not rename databases that are currently in use. If an underlying file is
being renamed and logging is currently enabled in the database environment, no database

in the file may be open when the DB->rename() method is called. In particular, some
architectures do not permit renaming files with open handles. On these architectures,
attempts to rename databases that are currently in use by any thread of control in the system
may fail.

The DB->rename () method should not be called if the rename is intended to be
transactionally safe; the DB_ENV->dbrename() (page 218) method should be used instead.

The DB->rename () method may not be called after calling the DB->open() (page 70) method
on any DB handle. If the DB->open() (page 70) method has already been called on a DB handle,
close the existing handle and create a new one before calling DB->rename().

The DB handle may not be accessed again after DB->rename() is called, regardless of its
return.

The DB->rename() method returns a non-zero error value on failure and 0 on success.

Parameters

file
The file parameter is the physical file which contains the database(s) to be renamed.

When using a Unicode build on Windows (the default), the file argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

database

The database parameter is the database to be renamed.
newname

The newname parameter is the new name of the database or file.
flags

The flags parameter is currently unused, and must be set to 0.

2/17/2015

DB C API Page 81



Library Version 12.1.6.1 The DB Handle

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

DB->rename() is affected by any database directory specified using the DB_ENV-
>add_data_dir() (page 206) method, or by setting the "add_data_dir" string in the
environment's DB_CONFIG file.

Errors

The DB->rename() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

ENOENT
The file or directory does not exist.

DB_META_CHKSUM_FAIL

Checksum mismatch detected on a database metadata page. Either the database is corrupted
or the file is not a Berkeley DB database file.

Class
DB

See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 82


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB Handle

DB->set_alloc()

#tinclude <db.h>

int

DB->set_alloc(DB *db,
void *(*app_malloc)(size_t),
void *(*app_realloc)(void *, size_t),
void (*app_free)(void *));

Set the allocation functions used by the DB_ENV and DB methods to allocate or free memory
owned by the application.

There are a number of interfaces in Berkeley DB where memory is allocated by the library

and then given to the application. For example, the DB_DBT_MALLOC flag, when specified

in the DBT object, will cause the DB methods to allocate and reallocate memory which

then becomes the responsibility of the calling application. (See DBT for more information.)
Other examples are the Berkeley DB interfaces which return statistical information to

the application: DB->stat() (page 141), DB_ENV->lock_stat() (page 364), DB_ENV-
>log_archive() (page 383), DB_ENV->log_stat() (page 398), DB_ENV->memp_stat() (page

432), and DB_ENV->txn_stat() (page 633). There is one method in Berkeley DB where

memory is allocated by the application and then given to the library: DB->associate() (page 6).

On systems in which there may be multiple library versions of the standard allocation
routines (notably Windows NT), transferring memory between the library and the application
will fail because the Berkeley DB library allocates memory from a different heap than the
application uses to free it. To avoid this problem, the DB_ENV->set_alloc() (page 264) and
DB->set_alloc() methods can be used to pass Berkeley DB references to the application's
allocation routines.

It is not an error to specify only one or two of the possible allocation function parameters to
these interfaces; however, in that case the specified interfaces must be compatible with the
standard library interfaces, as they will be used together. The functions specified must match
the calling conventions of the ANSI C X3.159-1989 (ANSI C) library routines of the same name.

Because databases opened within Berkeley DB environments use the allocation interfaces
specified to the environment, it is an error to attempt to set those interfaces in a database
created within an environment.

The DB->set_alloc() method may not be called after the DB->open() (page 70) method is
called.

The DB->set_alloc() method returns a non-zero error value on failure and 0 on success.

Errors

The DB->set_alloc() method may fail and return one of the following non-zero errors:
EINVAL

If called in a database environment, or called after DB->open() (page 70) was called; or if an
invalid flag value or parameter was specified.

2/17/2015

DB C API Page 83



Library Version 12.1.6.1 The DB Handle

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 84



Library Version 12.1.6.1 The DB Handle

DB->set_append_recno()

#include <db.h>

int
DB->set_append_recno(DB *,
int (*db_append_recno_fcn) (DB *dbp, DBT *data, db_recno_t recno));

When using the DB_APPEND option of the DB->put() (page 75) method, it may be useful to

modify the stored data based on the generated key. If a callback function is specified using
the DB->set_append_recno() method, it will be called after the record number has been
selected, but before the data has been stored.

The DB->set_append_recno() method configures operations performed using the specified
DB handle, not all operations performed on the underlying database.

The DB->set_append_recno() method may not be called after the DB->open() (page 70)
method is called.

The DB->set_append_recno() method returns a non-zero error value on failure and 0 on
success.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_append_recno_fcn

The db_append_recno_fcn parameter is a function to call after the record number has been
selected but before the data has been stored into the database. The function takes three
parameters:

e dbp

The dbp parameter is the enclosing database handle.
» data

The data parameter is the data DBT to be stored.
* recno

The recno parameter is the generated record number.

The called function may modify the data DBT. If the function needs to allocate memory for
the data field, the flags field of the returned DBT should be set to DB_DBT_APPMALLOC, which
indicates that Berkeley DB should free the memory when it is done with it.

2/17/2015

DB C API Page 85



Library Version 12.1.6.1 The DB Handle

The callback function must return 0 on success and errno or a value outside of the Berkeley
DB error name space on failure.

Errors

The DB->set_append_recno() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 86



Library Version 12.1.6.1 The DB Handle

DB->set_bt_compare()

#include <db.h>

int
DB->set bt _compare(DB *db, int (*bt_compare_fcn) (DB *db,
const DBT *dbtl, const DBT *dbt2, size_t *locp));

Set the Btree key comparison function. The comparison function is called whenever it is
necessary to compare a key specified by the application with a key currently stored in the
tree.

If no comparison function is specified, the keys are compared lexically, with shorter keys
collating before longer keys.

The DB->set_bt_compare() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_bt_compare() method may not be called after the DB->open() (page 70)
method is called. If the database already exists when DB->open() (page 70) is called, the
information specified to DB->set_bt_compare() must be the same as that historically used to
create the database or corruption can occur.

The DB->set_bt_compare() method returns a non-zero error value on failure and 0 on
success.

Parameters

bt_compare_fcn

The bt_compare_fcn function is the application-specified Btree comparison function. The
comparison function takes four parameters:

e db
The db parameter is the enclosing database handle.
» dbt1l
The dbt1 parameter is the DBT representing the application supplied key.
e dbt2
The dbt2 parameter is the DBT representing the current tree's key.
e locp
The locp parameter is currently unused, and must be set to NULL or corruption can occur.

The bt_compare_fcn function must return an integer value less than, equal to, or greater
than zero if the first key parameter is considered to be respectively less than, equal to, or
greater than the second key parameter. In addition, the comparison function must cause the

2/17/2015

DB C API Page 87



Library Version 12.1.6.1 The DB Handle

keys in the database to be well-ordered. The comparison function must correctly handle any
key values used by the application (possibly including zero-length keys). In addition, when
Btree key prefix comparison is being performed (see DB->set_bt_prefix() (page 93) for

more information), the comparison routine may be passed a prefix of any database key. The
data and size fields of the DBT are the only fields that may be used for the purposes of this
comparison, and no particular alignment of the memory to which by the data field refers may
be assumed.

Errors
The DB->set_bt_compare() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB

See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 88



Library Version 12.1.6.1 The DB Handle

DB->set_bt_compress()

#tinclude <db.h>

int
DB->set_bt_compress(DB *db,
int (*bt_compress_fcn) (DB *db, const DBT *prevKey,
const DBT *prevData, const DBT *key, const DBT *data, DBT *dest),
int (*bt_decompress_fcn) (DB *db, const DBT *prevKey,
const DBT *prevData, DBT *compressed, DBT *destKey,
DBT *destData));

Set the Btree compression and decompression functions. The compression function is called
whenever a key/data pair is added to the tree and the decompression function is called
whenever data is requested from the tree.

This method is only compatible with prefix-based compression routines. This callback is mostly
intended for compressing keys. From a performance perspective, it is better to perform
compression of the data portion of your records outside of the Berkeley DB library.

If NULL function pointers are specified, then default compression and decompression functions
are used. Berkeley DB's default compression function performs prefix compression on all keys
and prefix compression on data values for duplicate keys. If using default compression, both
the default compression and decompression functions must be used.

The DB->set_bt_compress() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_bt_compress() method may not be called after the DB->open() (page 70)
method is called. If the database already exists when DB->open() (page 70) is called, the
information specified to DB->set_bt_compress() must be the same as that historically used
to create the database or corruption can occur.

The DB->set_bt_compress() method returns a non-zero error value on failure and 0 on
success.

Parameters

bt_compress_fcn

The bt_compress_fcn function is the application-specified Btree compression function. The
compression function takes six parameters:

e db
The db parameter is the enclosing database handle.
e prevKey

The prevKey parameter is the DBT representing the key immediately preceding the
application supplied key.

2/17/2015

DB C API Page 89



Library Version 12.1.6.1 The DB Handle

prevData

The prevData parameter is the DBT representing the data associated with prevKey.
key

The key parameter is the DBT representing the application supplied key.

data

The data parameter is the DBT representing the application supplied data.

dest

The dest parameter is the DBT representing the data stored in the tree, where the function
should write the compressed data.

The bt_compress_fcn function must return 0 on success and a non-zero value on failure. If
the compressed data cannot fit in dest->data (the size of which is stored in dest->ulen), the
function should identify the required buffer size in dest->size and return DB_BUFFER_SMALL.

bt_decompress_fcn

The bt_decompress_fcn function is the application-specified Btree decompression function.
The decompression function takes six parameters:

db
The db parameter is the enclosing database handle.
prevKey

The prevKey parameter is the DBT representing the key immediately preceding the key
being decompressed.

prevData
The prevData parameter is the DBT representing the data associated with prevKey.
compressed

The compressed parameter is the DBT representing the data stored in the tree, that is, the
compressed data.

destKey

The key parameter is the DBT where the decompression function should store the
decompressed key.

destData

The data parameter is the DBT where the decompression function should store the
decompressed key.

2/17/2015

DB C API Page 90



Library Version 12.1.6.1 The DB Handle

The bt_decompress_fcn function must return 0 on success and a non-zero value on failure. If
the decompressed data cannot fit in key->data or data->data (the size of which is available in
the DBT's ulen field), the function should identify the required buffer size using the DBT's size
field and return DB_BUFFER_SMALL.

Errors

The DB->set_bt_compress() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 91



Library Version 12.1.6.1 The DB Handle

DB->set_bt_minkey()

#tinclude <db.h>

int
DB->set_bt_minkey(DB *db, u_int32_t bt_minkey);

Set the minimum number of key/data pairs intended to be stored on any single Btree leaf
page.

This value is used to determine if key or data items will be stored on overflow pages instead
of Btree leaf pages. For more information on the specific algorithm used, see Minimum keys
per page. The bt_minkey value specified must be at least 2; if bt_minkey is not explicitly
set, a value of 2 is used.

The DB->set_bt_minkey() method configures a database, not only operations performed
using the specified DB handle.

The DB->set_bt_minkey() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_bt_minkey() will be ignored.

The DB->set_bt _minkey() method returns a non-zero error value on failure and 0 on success.

Parameters
bt_minkey

The bt_minkey parameter is the minimum number of key/data pairs intended to be stored on
any single Btree leaf page.

Errors
The DB->set_bt_minkey() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB

See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 92


../../programmer_reference/bt_conf.html#am_conf_bt_minkey
../../programmer_reference/bt_conf.html#am_conf_bt_minkey

Library Version 12.1.6.1 The DB Handle

DB->set_bt_prefix()

#tinclude <db.h>

int
DB->set_bt_prefix(DB *db,
size t (*bt_prefix_fcn)(DB *, const DBT *dbtl, const DBT *dbt2));

Set the Btree prefix function. The prefix function is used to determine the amount by

which keys stored on the Btree internal pages can be safely truncated without losing their
uniqueness. See the Btree prefix comparison section of the Berkeley DB Reference Guide for
more details about how this works. The usefulness of this is data-dependent, but can produce
significantly reduced tree sizes and search times in some data sets.

If no prefix function or key comparison function is specified by the application, a default
lexical comparison function is used as the prefix function. If no prefix function is specified and
a key comparison function is specified, no prefix function is used. It is an error to specify a
prefix function without also specifying a Btree key comparison function.

The DB->set_bt_prefix() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_bt_prefix() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_bt_prefix() must be the same as that historically used to create the

database or corruption can occur.

The DB->set_bt_prefix() method returns a non-zero error value on failure and 0 on success.

Parameters

bt_prefix_fcn

The bt_prefix_fcn function is the application-specific Btree prefix function. The prefix
function takes three parameters:

e db

The db parameter is the enclosing database handle.
e dbtl

The dbt1 parameter is a DBT representing a database key.
e dbt2

The dbt2 parameter is a DBT representing a database key.

The bt_prefix_fcn function must return the number of bytes of the second key parameter
that would be required by the Btree key comparison function to determine the second key
parameter’s ordering relationship with respect to the first key parameter. If the two keys are

2/17/2015

DB C API Page 93


../../programmer_reference/bt_conf.html#am_conf_bt_prefix

Library Version 12.1.6.1 The DB Handle

equal, the key length should be returned. The prefix function must correctly handle any key
values used by the application (possibly including zero-length keys). The data and size fields
of the DBT are the only fields that may be used for the purposes of this determination, and no
particular alignment of the memory to which the data field refers may be assumed.

Errors
The DB->set_bt_prefix() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 94



Library Version 12.1.6.1 The DB Handle

DB->set_cachesize()
#include <db.h>
int
DB->set_cachesize(DB *db,
u_int32_t gbytes, u_int32_t bytes, int ncache);

Set the size of the shared memory buffer pool -- that is, the cache. The cache should be the
size of the normal working data set of the application, with some small amount of additional
memory for unusual situations. (Note: the working set is not the same as the number of pages
accessed simultaneously, and is usually much larger.)

The default cache size is 256KB, and may not be specified as less than 20KB. Any cache size
less than 500MB is automatically increased by 25% to account for buffer pool overhead; cache
sizes larger than 500MB are used as specified. The maximum size of a single cache is 4GB on
32-bit systems and 10TB on 64-bit systems. (All sizes are in powers-of-two, that is, 256KB

is 2*18 not 256,000.) For information on tuning the Berkeley DB cache size, see Selecting a
cache size.

It is possible to specify caches to Berkeley DB large enough they cannot be allocated
contiguously on some architectures. For example, some releases of Solaris limit the amount of
memory that may be allocated contiguously by a process. If ncache is 0 or 1, the cache will be
allocated contiguously in memory. If it is greater than 1, the cache will be split across ncache
separate regions, where the region size is equal to the initial cache size divided by ncache.

Because databases opened within Berkeley DB environments use the cache specified to
the environment, it is an error to attempt to set a cache in a database created within an
environment.

The DB->set_cachesize() method may not be called after the DB->open() (page 70) method
is called.

The DB->set_cachesize() method returns a non-zero error value on failure and 0 on success.
Parameters

gbytes

The size of the cache is set to gbytes gigabytes plus bytes.

bytes

The size of the cache is set to gbytes gigabytes plus bytes.

ncache

The ncache parameter is the number of caches to create.
Errors

The DB->set_cachesize() method may fail and return one of the following non-zero errors:

2/17/2015 DB C API Page 95


../../programmer_reference/general_am_conf.html#am_conf_cachesize
../../programmer_reference/general_am_conf.html#am_conf_cachesize

Library Version 12.1.6.1 The DB Handle

EINVAL

If the specified cache size was impossibly small; the method was called after DB-
>open() (page 70) was called; or if an invalid flag value or parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 96



Library Version 12.1.6.1 The DB Handle

DB->set_create_dir()
#include <db.h>

int
DB->set_create_dir(DB *db, const char *dir);

Specify which directory a database should be created in or looked for.

The DB->set_create_dir() method may not be called after the DB->open() (page 70)
method is called.

The DB->set_create_dir() method returns a non-zero error value on failure and 0 on
success.

Parameters
dir

The dir will be used to create or locate the database file specified in the DB->open() (page 70)
method call. The directory must be one of the directories in the environment list specified by
DB_ENV->add_data_dir() (page 206).

Errors
The DB->set_create_dir() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB

See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 97



Library Version 12.1.6.1 The DB Handle

DB->set_dup_compare()
#include <db.h>

int
DB->set_dup_compare(DB *db, int (*dup_compare_fcn)(DB *db,
const DBT *dbtl, const DBT *dbt2, size_t *locp));

Set the duplicate data item comparison function. The comparison function is called whenever
it is necessary to compare a data item specified by the application with a data item currently
stored in the database. Calling DB->set_dup_compare() implies calling DB->set_flags() (page
108) with the DB_DUPSORT flag.

If no comparison function is specified, the data items are compared lexically, with shorter
data items collating before longer data items.

The DB->set_dup_compare() method may not be called after the DB->open() (page 70)
method is called. If the database already exists when DB->open() (page 70) is called, the
information specified to DB->set_dup_compare() must be the same as that historically used
to create the database or corruption can occur.

The DB->set_dup_compare() method returns a non-zero error value on failure and 0 on
success.

Parameters
dup_compare_fcn

The dup_compare_fcn function is the application-specified duplicate data item comparison
function. The function takes four arguments:

e db
The db parameter is the enclosing database handle.
» dbt1l
The dbt1 parameter is a DBT representing the application supplied data item.
e dbt2
The dbt2 parameter is a DBT representing the current tree's data item.
e locp
The locp parameter is currently unused, and must be set to NULL or corruption can occur.

The dup_compare_fcn function must return an integer value less than, equal to, or greater
than zero if the first data item parameter is considered to be respectively less than, equal
to, or greater than the second data item parameter. In addition, the comparison function
must cause the data items in the set to be well-ordered. The comparison function must

2/17/2015 DB C API Page 98



Library Version 12.1.6.1 The DB Handle

correctly handle any data item values used by the application (possibly including zero-length
data items). The data and size fields of the DBT are the only fields that may be used for the
purposes of this comparison, and no particular alignment of the memory to which the data
field refers may be assumed.

Errors

The DB->set_dup_compare() method may fail and return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.
Class

DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 99



Library Version 12.1.6.1 The DB Handle

DB->set_encrypt()

#tinclude <db.h>

int
DB->set_encrypt(DB *db, const char *passwd, u_int32_t flags);

Set the password used by the Berkeley DB library to perform encryption and decryption.

Because databases opened within Berkeley DB environments use the password specified to
the environment, it is an error to attempt to set a password in a database created within an
environment.

The DB->set_encrypt() method may not be called after the DB->open() (page 70) method is
called.

The DB->set_encrypt() method returns a non-zero error value on failure and 0 on success.

Parameters
passwd
The passwd parameter is the password used to perform encryption and decryption.
flags
The flags parameter must be set to 0 or the following value:
« DB_ENCRYPT_AES

Use the Rijndael/AES (also known as the Advanced Encryption Standard and Federal
Information Processing Standard (FIPS) 197) algorithm for encryption or decryption.

Errors
The DB->set_encrypt() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

EOPNOTSUPP

Cryptography is not available in this Berkeley DB release.
Class

DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 100



Library Version 12.1.6.1 The DB Handle

DB->set_errcall()

#tinclude <db.h>

void
DB->set_errcall(DB *, void (*db_errcall_fcn)
(const DB_ENV *dbenv, const char *errpfx, const char *msg));

When an error occurs in the Berkeley DB library, a Berkeley DB error or an error return value
is returned by the interface. In some cases, however, the errno value may be insufficient to
completely describe the cause of the error, especially during initial application debugging.

The DB_ENV->set_errcall() (page 286) and DB->set_errcall() methods are used to enhance
the mechanism for reporting error messages to the application. In some cases, when an error
occurs, Berkeley DB will call db_errcall_fcn() with additional error information. It is up to the
db_errcall_fcn() function to display the error message in an appropriate manner.

Setting db_errcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DB->set_errfile() (page 103) or DB->set_errfile() (page 288)
methods to display the additional information via a C library FILE *.

This error-logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

For DB handles opened inside of Berkeley DB environments, calling the DB->set_errcall()
method affects the entire environment and is equivalent to calling the DB_ENV-
>set_errcall() (page 286) method.

When used on a database that was not opened in an environment, the DB->set_errcall()
method configures operations performed using the specified DB handle, not all operations
performed on the underlying database.

The DB->set_errcall() method may be called at any time during the life of the application.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_errcall_fcn

The db_errcall_fcn parameter is the application-specified error reporting function. The
function takes three parameters:

e dbenv

2/17/2015

DB C API Page 101



Library Version 12.1.6.1 The DB Handle

The dbenv parameter is the enclosing database environment.
e errpfx

The errpfx parameter is the prefix string (as previously set by DB->set_errpfx() (page 105)
or DB_ENV->set_errpfx() (page 290) ).

* msg
The msg parameter is the error message string.
Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 102



Library Version 12.1.6.1 The DB Handle

DB->set_errfile()

#include <db.h>

void
DB->set_errfile(DB *db, FILE *errfile);

When an error occurs in the Berkeley DB library, a Berkeley DB error or an error return value
is returned by the interface. In some cases, however, the errno value may be insufficient to
completely describe the cause of the error, especially during initial application debugging.

The DB_ENV->set_errfile() (page 288) and DB->set_errfile() methods are used to enhance
the mechanism for reporting error messages to the application by setting a C library FILE * to
be used for displaying additional Berkeley DB error messages. In some cases, when an error
occurs, Berkeley DB will output an additional error message to the specified file reference.

Alternatively, you can use the DB_ENV->set_errcall() (page 286) or DB->set_errcall() (page
101) methods to capture the additional error information in a way that does not use C library
FILE *'s.

The error message will consist of the prefix string and a colon (":") (if a prefix string was
previously specified using DB->set_errpfx() (page 105) or DB_ENV->set_errpfx() (page 290) ),
an error string, and a trailing <newline> character.

The default configuration when applications first create DB or DB_ENV handles is as if the
DB_ENV->set_errfile() (page 288) or DB->set_errfile() methods were called with the
standard error output (stderr) specified as the FILE * argument. Applications wanting no
output at all can turn off this default configuration by calling the DB_ENV->set_errfile() (page
288) or DB->set_errfile() methods with NULL as the FILE * argument. Additionally,
explicitly configuring the error output channel using any of the following methods will also
turn off this default output for the application:

e DB->set_errfile()

o DB_ENV->set_errfile() (page 288)
o DB_ENV->set_errcall() (page 286)
« DB->set_errcall() (page 101)

This error logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

For DB handles opened inside of Berkeley DB environments, calling the DB->set_errfile()
method affects the entire environment and is equivalent to calling the DB_ENV-
>set_errfile() (page 288) method.

When used on a database that was not opened in an environment, the DB->set_errfile()
method configures operations performed using the specified DB handle, not all operations
performed on the underlying database.

2/17/2015

DB C API Page 103



Library Version 12.1.6.1 The DB Handle

The DB->set_errfile() method may be called at any time during the life of the application.

Parameters
errfile

The errfile parameter is a C library FILE * to be used for displaying additional Berkeley DB
error information.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 104



Library Version 12.1.6.1 The DB Handle

DB->set_errpfx()

#tinclude <db.h>

void
DB->set_errpfx(DB *db, const char *errpfx);

Set the prefix string that appears before error messages issued by Berkeley DB.

The DB->set_errpfx() and DB_ENV->set_errpfx() (page 290) methods do not copy the
memory to which the errpfx parameter refers; rather, they maintain a reference to it.
Although this allows applications to modify the error message prefix at any time (without
repeatedly calling the interfaces), it means the memory must be maintained until the handle
is closed.

For DB handles opened inside of Berkeley DB environments, calling the DB->set_errpfx()
method affects the entire environment and is equivalent to calling the DB_ENV-
>set_errpfx() (page 290) method.

The DB->set_errpfx() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_errpfx() method may be called at any time during the life of the application.
Parameters

errpfx

The errpfx parameter is the application-specified error prefix for additional error messages.
Class

DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 105



Library Version 12.1.6.1 The DB Handle

DB->set_feedback()

#tinclude <db.h>

int
DB->set_feedback(DB *,
void (*db_feedback_fcn) (DB *dbp, int opcode, int percent));

Some operations performed by the Berkeley DB library can take non-trivial amounts of time.
The DB->set_feedback() method can be used by applications to monitor progress within
these operations. When an operation is likely to take a long time, Berkeley DB will call the
specified callback function with progress information.

It is up to the callback function to display this information in an appropriate manner.

The DB->set_feedback() method may be called at any time during the life of the
application.

The DB->set_feedback() method returns a non-zero error value on failure and 0 on success.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters
db_feedback_fcn

The db_feedback_fcn parameter is the application-specified feedback function called to
report Berkeley DB operation progress. The callback function must take three parameters:

« dbp
The dbp parameter is a reference to the enclosing database.
¢ opcode

The opcode parameter is an operation code. The opcode parameter may take on any of the
following values:

e DB_UPGRADE

The underlying database is being upgraded.
e DB_VERIFY

The underlying database is being verified.

e percent

2/17/2015 DB C API Page 106



Library Version 12.1.6.1 The DB Handle

The percent parameter is the percent of the operation that has been completed, specified
as an integer value between 0 and 100.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 107



Library Version 12.1.6.1 The DB Handle

DB->set_flags()

#include <db.h>
int
DB->set_flags(DB *db, u_int32_t flags);
Configure a database. Calling DB->set_flags() is additive; there is no way to clear flags.

The DB->set_flags() method may not be called after the DB->open() (page 70) method is
called.

The DB->set_flags() method returns a non-zero error value on failure and 0 on success.

Parameters
flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

General
The following flags may be specified for any Berkeley DB access method:
e DB_CHKSUM

Do checksum verification of pages read into the cache from the backing filestore. Berkeley
DB uses the SHA1 Secure Hash Algorithm if encryption is configured and a general hash
algorithm if it is not.

Calling DB->set_flags() with the DB_CHKSUM flag only affects the specified DB handle
(and any other Berkeley DB handles opened within the scope of that handle).

If the database already exists when DB->open() (page 70) is called, the DB_CHKSUM flag will
be ignored.

e DB_ENCRYPT

Encrypt the database using the cryptographic password specified to the DB_ENV-
>set_encrypt() (page 278) or DB->set_encrypt() (page 100) methods.

Calling DB->set_flags() with the DB_ENCRYPT flag only affects the specified DB handle
(and any other Berkeley DB handles opened within the scope of that handle).

If the database already exists when DB->open() (page 70) is called, the DB_ENCRYPT flag
must be the same as the existing database or an error will be returned.

Encrypted databases are not portable between machines of different byte orders, that
is, encrypted databases created on big-endian machines cannot be read on little-endian
machines, and vice versa.

« DB_TXN_NOT_DURABLE

2/17/2015

DB C API Page 108



Library Version 12.1.6.1 The DB Handle

If set, Berkeley DB will not write log records for this database. This means that updates
of this database exhibit the ACI (atomicity, consistency, and isolation) properties, but

not D (durability); that is, database integrity will be maintained, but if the application or
system fails, integrity will not persist. The database file must be verified and/or restored
from backup after a failure. In order to ensure integrity after application shut down,

the database handles must be closed without specifying DB_NOSYNC, or all database
changes must be flushed from the database environment cache using either the DB_ENV-
>txn_checkpoint() (page 631) or DB_ENV->memp_sync() (page 439) methods. All database
handles for a single physical file must set DB_TXN_NOT_DURABLE, including database
handles for different databases in a physical file.

Calling DB->set_flags() with the DB_TXN_NOT_DURABLE flag only affects the specified DB
handle (and any other Berkeley DB handles opened within the scope of that handle).

Btree
The following flags may be specified for the Btree access method:

+ DB_DUP

Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering of
duplicates in the database is determined by the order of insertion, unless the ordering is
otherwise specified by use of a cursor operation or a duplicate sort function.

The DB_DUPSORT flag is preferred to DB_DUP for performance reasons. The DB_DUP flag
should only be used by applications wanting to order duplicate data items manually.

Calling DB->set_flags() with the DB_DUP flag affects the database, including all threads
of control accessing the database.

If the database already exists when DB->open() (page 70) is called, the DB_DUP flag must be
the same as the existing database or an error will be returned.

It is an error to specify both DB_DUP and DB_RECNUM.
DB_DUPSORT

Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering

of duplicates in the database is determined by the duplicate comparison function. If the
application does not specify a comparison function using the DB->set_dup_compare() (page
98) method, a default lexical comparison will be used. It is an error to specify both
DB_DUPSORT and DB_RECNUM.

Calling DB->set_flags() with the DB_DUPSORT flag affects the database, including all
threads of control accessing the database.

If the database already exists when DB->open() (page 70) is called, the DB_DUPSORT flag
must be the same as the existing database or an error will be returned.

2/17/2015

DB C API Page 109



Library Version 12.1.6.1 The DB Handle

e DB_RECNUM

Support retrieval from the Btree using record numbers. For more information, see the
DB_SET_RECNO flag to the DB->get() (page 31) and DBcursor->get() (page 171) methods.

Logical record numbers in Btree databases are mutable in the face of record insertion or
deletion. See the DB_RENUMBER flag in the Recno access method information for further
discussion.

Maintaining record counts within a Btree introduces a serious point of contention, namely
the page locations where the record counts are stored. In addition, the entire database
must be locked during both insertions and deletions, effectively single-threading the
database for those operations. Specifying DB_RECNUM can result in serious performance
degradation for some applications and data sets.

It is an error to specify both DB_DUP and DB_RECNUM.

Calling DB->set_flags() with the DB_RECNUM flag affects the database, including all
threads of control accessing the database.

If the database already exists when DB->open() (page 70) is called, the DB_RECNUM flag
must be the same as the existing database or an error will be returned.

e DB_REVSPLITOFF

Turn off reverse splitting in the Btree. As pages are emptied in a database, the Berkeley
DB Btree implementation attempts to coalesce empty pages into higher-level pages in
order to keep the database as small as possible and minimize search time. This can hurt
performance in applications with cyclical data demands; that is, applications where the
database grows and shrinks repeatedly. For example, because Berkeley DB does page-level
locking, the maximum level of concurrency in a database of two pages is far smaller than
that in a database of 100 pages, so a database that has shrunk to a minimal size can cause
severe deadlocking when a new cycle of data insertion begins.

Calling DB->set_flags() with the DB_REVSPLITOFF flag only affects the specified DB
handle (and any other Berkeley DB handles opened within the scope of that handle).

Hash

The following flags may be specified for the Hash access method:

« DB_DUP
Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering of
duplicates in the database is determined by the order of insertion, unless the ordering is

otherwise specified by use of a cursor operation.

The DB_DUPSORT flag is preferred to DB_DUP for performance reasons. The DB_DUP flag
should only be used by applications wanting to order duplicate data items manually.

2/17/2015 DB C API Page 110



Library Version 12.1.6.1 The DB Handle

Calling DB->set_flags() with the DB_DUP flag affects the database, including all threads
of control accessing the database.

If the database already exists when DB->open() (page 70) is called, the DB_DUP flag must be
the same as the existing database or an error will be returned.

DB_DUPSORT

Permit duplicate data items in the database; that is, insertion when the key of the key/
data pair being inserted already exists in the database will be successful. The ordering

of duplicates in the database is determined by the duplicate comparison function. If the
application does not specify a comparison function using the DB->set_dup_compare() (page
98) method, a default lexical comparison will be used.

Calling DB->set_flags() with the DB_DUPSORT flag affects the database, including all
threads of control accessing the database.

If the database already exists when DB->open() (page 70) is called, the DB_DUPSORT flag
must be the same as the existing database or an error will be returned.

DB_REVSPLITOFF

Turns off hash bucket compaction. When a hash bucket is emptied, the Berkeley DB Hash
implementation will decrease the hash table size, coalescing buckets. This will decrease the
number of pages in the database. This can hurt performance in applications with cyclical
data demands — that is, applications where the database grows and shrinks repeatedly —
because of the cost of resplitting buckets when they grow again.

Calling DB->set_flags() with the DB_REVSPLITOFF flag only affects the specified DB
handle (and any other Berkeley DB handles opened within the scope of that handle).

Queue
The following flags may be specified for the Queue access method:

e DB_INORDER

The DB_INORDER flag modifies the operation of the DB_CONSUME or DB_CONSUME_WAIT
flags to DB->get() (page 31) to return key/data pairs in order. That is, they will always
return the key/data item from the head of the queue.

The default behavior of queue databases is optimized for multiple readers, and does

not guarantee that record will be retrieved in the order they are added to the queue.
Specifically, if a writing thread adds multiple records to an empty queue, reading threads
may skip some of the initial records when the next DB->get() (page 31) call returns.

This flag modifies the DB->get() (page 31) call to verify that the record being returned is
in fact the head of the queue. This will increase contention and reduce concurrency when
there are many reading threads.

2/17/2015

DB C API Page 111



Library Version 12.1.6.1 The DB Handle

Calling DB->set_flags() with the DB_INORDER flag only affects the specified DB handle
(and any other Berkeley DB handles opened within the scope of that handle).

Recno
The following flags may be specified for the Recno access method:
e DB_RENUMBER

Specifying the DB_RENUMBER flag causes the logical record numbers to be mutable, and
change as records are added to and deleted from the database.

Using the DB->put() (page 75) or DBcursor->put() (page 180) interfaces to create new
records will cause the creation of multiple records if the record number is more than one
greater than the largest record currently in the database. For example, creating record 28,
when record 25 was previously the last record in the database, will create records 26 and 27
as well as 28. Attempts to retrieve records that were created in this manner will result in an
error return of DB_KEYEMPTY.

If a created record is not at the end of the database, all records following the new record
will be automatically renumbered upward by one. For example, the creation of a new
record numbered 8 causes records numbered 8 and greater to be renumbered upward by
one. If a cursor was positioned to record number 8 or greater before the insertion, it will be
shifted upward one logical record, continuing to refer to the same record as it did before.

If a deleted record is not at the end of the database, all records following the removed
record will be automatically renumbered downward by one. For example, deleting the
record numbered 8 causes records numbered 9 and greater to be renumbered downward
by one. If a cursor was positioned to record number 9 or greater before the removal, it will
be shifted downward one logical record, continuing to refer to the same record as it did
before.

If a record is deleted, all cursors that were positioned on that record prior to the removal
will no longer be positioned on a valid entry. This includes cursors used to delete an item.
For example, if a cursor was positioned to record number 8 before the removal of that
record, subsequent calls to DBcursor->get() (page 171) with flags of DB_CURRENT will

result in an error return of DB_KEYEMPTY until the cursor is moved to another record. A call
to DBcursor->get() (page 171) with flags of DB_NEXT will return the new record numbered

8 - which is the record that was numbered 9 prior to the delete (if such a record existed).

For these reasons, concurrent access to a Recno database with the DB_RENUMBER flag
specified may be largely meaningless, although it is supported.

Calling DB->set_flags() with the DB_RENUMBER flag affects the database, including all
threads of control accessing the database.

If the database already exists when DB->open() (page 70) is called, the DB_RENUMBER flag
must be the same as the existing database or an error will be returned.

e DB_SNAPSHOT

2/17/2015

DB C API Page 112


../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 12.1.6.1 The DB Handle

This flag specifies that any specified re_source file be read in its entirety when DB-
>open() (page 70) is called. If this flag is not specified, the re_source file may be read
lazily.

See the DB->set_re_source() (page 137) method for information on the re_source file.

Calling DB->set_flags() with the DB_SNAPSHOT flag only affects the specified DB handle
(and any other Berkeley DB handles opened within the scope of that handle).

Errors

The DB->set_flags() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 113



Library Version 12.1.6.1 The DB Handle

DB->set__h_compare()

#tinclude <db.h>

int
DB->set_h_compare(DB *db, int (*compare_fcn)(DB *db,
const DBT *dbtl, const DBT *dbt2, size_t *locp));

Set the Hash key comparison function. The comparison function is called whenever it is
necessary to compare a key specified by the application with a key currently stored in the
database.

If no comparison function is specified, a byte-by-byte comparison is performed.

The DB->set_h_compare() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_h_compare() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_h_compare() must be the same as that historically used to create the
database or corruption can occur.

The DB->set_h_compare() method returns a non-zero error value on failure and 0 on success.

Parameters

compare_fcn

The compare_fcn function is the application-specified Hash comparison function. The
comparison function takes four parameters:

e db

The db parameter is the enclosing database handle.
e dbtl

The dbt1 parameter is the DBT representing the application supplied key.
e dbt2

The dbt2 parameter is the DBT representing the current database’s key.
e locp

The locp parameter is currently unused, and must be set to NULL or corruption can occur.
The compare_fcn function must return an integer value less than, equal to, or greater than
zero if the first key parameter is considered to be respectively less than, equal to, or greater

than the second key parameter. The comparison function must correctly handle any key values
used by the application (possibly including zero-length keys). The data and size fields of

2/17/2015

DB C API Page 114



Library Version 12.1.6.1 The DB Handle

the DBT are the only fields that may be used for the purposes of this comparison, and no
particular alignment of the memory to which by the data field refers may be assumed.

Errors

The DB->set_h_compare() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 115



Library Version 12.1.6.1 The DB Handle

DB->set_h_ffactor()

#tinclude <db.h>

int
DB->set_h_ffactor(DB *db, u_int32_t h_ffactor);

Set the desired density within the hash table. If no value is specified, the fill factor will be
selected dynamically as pages are filled.

The density is an approximation of the number of keys allowed to accumulate in any one
bucket, determining when the hash table grows or shrinks. If you know the average sizes
of the keys and data in your data set, setting the fill factor can enhance performance. A
reasonable rule computing fill factor is to set it to the following:

(pagesize - 32) / (average key size + average data_size + 8)

The DB->set_h_ffactor() method configures a database, not only operations performed
using the specified DB handle.

The DB->set_h_ffactor() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_h_ffactor() will be ignored.

The DB->set_h_ffactor() method returns a non-zero error value on failure and 0 on success.

Parameters

h_ffactor

The h_ffactor parameter is the desired density within the hash table.

Errors

The DB->set_h_ffactor() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class

DB

See Also

Database and Related Methods (page 3)

2/17/2015

DB C API Page 116



Library Version 12.1.6.1 The DB Handle

DB->set_h_hash()

#tinclude <db.h>

int

DB->set_h_hash(DB *db,
u_int32_t (*h_hash_fcn) (DB *dbp, const void *bytes,
u_int32_t length));

Set a user-defined hash function; if no hash function is specified, a default hash function is
used. Because no hash function performs equally well on all possible data, the user may find
that the built-in hash function performs poorly with a particular data set.

The DB->set_h_hash() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_h_hash() method may not be called after the DB->open() (page 70) method is
called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_h_hash() must be the same as that historically used to create the

database or corruption can occur.

The DB->set_h_hash() method returns a non-zero error value on failure and 0 on success.

Parameters
h_hash_fcn
The h_hash_fcn parameter is the application-specified hash function.

Application-specified hash functions take a pointer to a byte string and a length as
parameters, and return a value of type u_int32_t. The hash function must handle any key
values used by the application (possibly including zero-length keys).

Errors
The DB->set_h_hash() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB

See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 117



Library Version 12.1.6.1 The DB Handle

DB->set_h_nelem()
#include <db.h>

int
DB->set_h_nelem(DB *db, u_int32_t h_nelem);

Set an estimate of the final size of the hash table.

In order for the estimate to be used when creating the database, the DB-

>set_h_ffactor() (page 116) method must also be called. If the estimate or fill factor are not
set or are set too low, hash tables will still expand gracefully as keys are entered, although a
slight performance degradation may be noticed.

The DB->set_h_nelem() method configures a database, not only operations performed using
the specified DB handle.

The DB->set_h_nelem() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_h_nelem() will be ignored.

The DB->set_h_nelem() method returns a non-zero error value on failure and 0 on success.
Parameters
h_nelem
The h_nelem parameter is an estimate of the final size of the hash table.
Errors
The DB->set_h_nelem() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 118



Library Version 12.1.6.1 The DB Handle

DB->set_heapsize()
#include <db.h>

int
DB->set_heapsize(DB *db,
u_int32_t gbytes, u_int32_t bytes, u_int32_t flags);

Sets the maximum on-disk database file size used by a database configured to use the Heap
access method. If this method is never called, the database’s file size can grow without bound.
If this method is called, then the heap file can never grow larger than the limit defined by
this method. In that case, attempts to update or create records in a Heap database that has
reached its maximum size will result in a DB_HEAP_FULL error return.

The size specified to this method must be at least three times the database page size. That is,
a Heap database must contain at least three database pages. You can set the database page
size using the DB->set_pagesize() (page 128) method.

The DB->set_heapsize() method may not be called after the DB->open() (page 70) method is
called. Further, if this method is called on an existing Heap database, the size specified here
must match the size used to create the database. Note, however, that specifying an incorrect
size to this method will not result in an error return (EINVAL) until the database is opened.

The DB->set_heapsize() method returns a non-zero error value on failure and 0 on success.

Parameters
gbytes
The size of the heap is set to gbytes gigabytes plus bytes.
bytes
The size of the heap is set to gbytes gigabytes plus bytes.
flags
The flags parameter is currently unused, and must be set to 0.
Errors
The DB->set_heapsize() method may fail and return one of the following non-zero errors:
EINVAL

If the specified heap size was too small; the method was called after DB->open() (page 70)
was called; or if an invalid flag value or parameter was specified.

Class

DB

2/17/2015 DB C API Page 119



Library Version 12.1.6.1 The DB Handle

See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 120



Library Version 12.1.6.1 The DB Handle

DB->set_heap_regionsize()

#tinclude <db.h>

int
DB->set_heap_regionsize(DB *db, u_int32_t npages);

Sets the number of pages in a region of a database configured to use the Heap access method.
If this method is never called, the default region size for the database’s page size will be used.
You can set the database page size using the DB->set_pagesize() (page 128) method.

The DB->set_heap_regionsize() method may not be called after the DB->open() (page
70) method is called. If the database already exists when DB->open() (page 70) is called,

the information specified to DB->set_heap_regionsize() will be ignored. If the specified
region size is larger than the maximum region size for the database's page size, an error will
be returned when DB->open() (page 70) is called. The maximum allowable region size will be
included in the error message.

The DB->set_heap_regionsize() method returns a non-zero error value on failure and 0 on
success.

Parameters

npages

The npages parameter is the number of pages in a Heap database region.

Errors

The DB->set_heap_regionsize() method may fail and return one of the following non-zero
errors:

EINVAL

If the specified region size was too small; the method was called after DB->open() (page 70)
was called; or if an invalid flag value or parameter was specified.

Class

DB

See Also

Database and Related Methods (page 3), DB->get_heap_regionsize() (page 48)

2/17/2015

DB C API Page 121



Library Version 12.1.6.1 The DB Handle

DB->set_Ilk_exclusive()

#tinclude <db.h>

int
DB->set_lk_exclusive(DB *db, int nowait_onoff);

Configures the database handle to obtain a write lock on the entire database when it is
opened. This gives the handle exclusive access to the database, because the write lock will
block all other threads of control for both read and write access.

Use this method to improve the throughput performance on your database for the thread that
is controlling this handle. When configured with this method, operations on the database do
not acquire page locks as they perform read and/or write operations. Also, the exclusive lock
means that operations performed on the database handle will never be blocked waiting for
lock due to another thread's activities. The application will also be immune to deadlocks.

On the other hand, use of this method means that you can only have a single thread accessing
the database until the handle is closed. For some applications, the loss of multiple threads
concurrently operating on the database will result in performance degradation.

Also, use of this method means that you can only have one transaction active for the handle at
a time.

Note

This method is incompatible with the DB_THREAD (page 72) configuration flag.

The DB->set_1lk_exclusive() method may not be called after the DB->open() (page 70)
method is called.

The DB->set_1k_exclusive() method returns a non-zero error value on failure and 0 on
success.

Replication Notes

Replication applications that use exclusive database handles need to be written with caution.
This is because replication clients cannot process updates on an exclusive database until all
local handles on the database are closed. Also, attempting to open an exclusive database
handle on a currently operating client will result in the open call failing with the error
EINVAL.

Also, opening an exclusive database handle on a replication master will result in all clients
being locked out of the database. On clients, existing handles on the exclusive database will
return the error DB_REP_DEAD_HANDLE when accessed, and must be closed. New handles
opened on the exclusive database will block until the master closes its exclusive database
handle.

2/17/2015

DB C API Page 122



Library Version 12.1.6.1 The DB Handle

Parameters
nowait_onoff

If set to @, this method will block until it can obtain the exclusive lock on the database. If set
to some value other than @, DB_LOCK_NOTGRANTED is returned when the handle is opened if
the exclusive database lock cannot be immediately obtained.

Errors

The DB->set_1k_exclusive() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called after DB->open() (page 70) was called; the method was called on a
currently operating replication client; or if an invalid flag value or parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 123



Library Version 12.1.6.1 The DB Handle

DB->set_lorder()

#tinclude <db.h>

int
DB->set_lorder(DB *db, int lorder);

Set the byte order for integers in the stored database metadata. The host byte order of the
machine where the Berkeley DB library was compiled will be used if no byte order is set.

The access methods provide no guarantees about the byte ordering of the application data
stored in the database, and applications are responsible for maintaining any necessary
ordering.

The DB->set_lorder() method configures a database, not only operations performed using
the specified DB handle.

The DB->set_lorder() method may not be called after the DB->open() (page 70) method is
called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_lorder() will be ignored.

If creating additional databases in a single physical file, information specified to DB-
>set_lorder() will be ignored and the byte order of the existing databases will be used.

The DB->set_lorder() method returns a non-zero error value on failure and 0 on success.

Parameters
lorder

The lorder parameter should represent the byte order as an integer; for example, big endian
order is the number 4,321, and little endian order is the number 1,234.

Errors
The DB->set_lorder() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB

See Also

Database and Related Methods (page 3)

2/17/2015

DB C API Page 124



Library Version 12.1.6.1 The DB Handle

DB->set_msgcalil()

#tinclude <db.h>

void
DB->set_msgcall(DB *,
void (*db_msgcall_fcn)(const DB_ENV *dbenv, const char *msg));

There are interfaces in the Berkeley DB library which either directly output informational
messages or statistical information, or configure the library to output such messages when
performing other operations, for example, DB_ENV->set_verbose() (page 325) and DB_ENV-
>stat_print() (page 328).

The DB_ENV->set_msgcall() (page 309) and DB->set_msgcall() methods are used to pass
these messages to the application, and Berkeley DB will call db_msgcall_fcn with each
message. It is up to the db_msgcall_fcn function to display the message in an appropriate
manner.

Setting db_msgcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DB->set_msgfile() (page 127) or DB->set_msgfile() (page 311)
methods to display the messages via a C library FILE *.

For DB handles opened inside of Berkeley DB environments, calling the DB->set_msgcall()
method affects the entire environment and is equivalent to calling the DB_ENV-
>set_msgcall() method.

The DB->set_msgcall() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_msgcall() method may be called at any time during the life of the application.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_msgcall_fcn

The db_msgcall_fcn parameter is the application-specified message reporting function. The
function takes two parameters:

» dbenv
The dbenv parameter is the enclosing database environment.

* msg

2/17/2015

DB C API Page 125



Library Version 12.1.6.1 The DB Handle

The msg parameter is the message string.
Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 126



Library Version 12.1.6.1 The DB Handle

DB->set_msgfile()

#tinclude <db.h>

void
DB->set_msgfile(DB *db, FILE *msgfile);

There are interfaces in the Berkeley DB library which either directly output informational
messages or statistical information, or configure the library to output such messages when
performing other operations, for example, DB_ENV->set_verbose() (page 325) and DB_ENV-
>stat_print() (page 328).

The DB_ENV->set_msgfile() (page 311) and DB->set_msgfile() methods are used to display
these messages for the application. In this case the message will include a trailing <newline>
character.

Setting msgfile to NULL unconfigures the interface.

Alternatively, you can use the DB_ENV->set_msgcall() (page 309) or DB->set_msgcall() (page
125) methods to capture the additional error information in a way that does not use C library
FILE *'s.

For DB handles opened inside of Berkeley DB environments, calling the DB->set_msgfile()
method affects the entire environment and is equivalent to calling the DB_ENV-
>set_msgfile() (page 311) method.

The DB->set_msgfile() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

The DB->set_msgfile() method may be called at any time during the life of the application.
Parameters

msdfile

The msgfile parameter is a C library FILE * to be used for displaying messages.
Class

DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 127



Library Version 12.1.6.1 The DB Handle

DB->set_pagesize()

#tinclude <db.h>

int
DB->set_pagesize(DB *db, u_int32_t pagesize);

Set the size of the pages used to hold items in the database, in bytes. The minimum page size
is 512 bytes, the maximum page size is 64K bytes, and the page size must be a power-of-two.
If the page size is not explicitly set, one is selected based on the underlying filesystem 1/0
block size. The automatically selected size has a lower limit of 512 bytes and an upper limit of
16K bytes.

For information on tuning the Berkeley DB page size, see Selecting a page size.

The DB->set_pagesize() method configures a database, not only operations performed using
the specified DB handle.

The DB->set_pagesize() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_pagesize() will be ignored.

If creating additional databases in a single physical file, information specified to DB-
>set_pagesize() will be ignored and the page size of the existing databases will be used.

The DB->set_pagesize() method returns a non-zero error value on failure and 0 on success.

Parameters
pagesize
The pagesize parameter sets the database page size.
Errors
The DB->set_pagesize() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015

DB C API Page 128


../../programmer_reference/general_am_conf.html#am_conf_pagesize

Library Version 12.1.6.1 The DB Handle

DB->set_partition()

#tinclude <db.h>

int
DB->set_partition(DB * db, u_int32_t parts, DBT *keys,
u_int32_t (*db_partition_fcn) (DB *db, DBT *key));

Set up partitioning for a database. Partitioning may be used on either BTREE or HASH
databases. Partitions may be specified by either a set of keys specifying a range of values in
each partition, or with a callback function that returns the number of the partition to put a
specific key. Partition range keys may only be specified for BTREE databases.

Partitions are implemented as separate database files and can help reduce contention within
a logical database. Contention can come from multiple threads of control accessing database
pages simultaneously. Typically these pages are the root of a btree and the metadata page
which contains allocation information in both BTREE and HASH databases. Each partition has
its own metadata and root pages.

Parameters
Exactly one of the parameters keys and partition_fcn must be NULL.
parts

The parts parameter is the number of partitions to create. The value must be greater than or
equal to 2, and smaller than 1000000.

keys

The keys parameter is an array of DBT structures containing the keys that specify the range of
key values to be stored in each partition. Each key specifies the minimum value that may be
stored in the corresponding partition. The number of keys must be one less than the number
of partitions specified by the parts parameter since the first partition will hold any key less
than the first key in the array.

db_ partition_fcn

The db_partition_fcn parameter is the application-specified partitioning function. The
function returns an integer which will be used modulo the number of partitions specified by
the parts parameter. The function will be called with two parameters:

e db
The db parameter is the database handle.
* key
The key parameter is the key for which a partition number should be returned.
Class
DB

2/17/2015 DB C API Page 129



Library Version 12.1.6.1 The DB Handle

See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 130



Library Version 12.1.6.1 The DB Handle

DB->set_partition_dirs()

#tinclude <db.h>

int
DB->set_partition_dirs(DB *db, const char **dirs);

Specify which directories will contain the database extents. If the number of directories is less
than the number of partitions, the directories will be used in a round robin fashion.

The DB->set_partition_dirs() method may not be called after the DB->open() (page 70)
method is called.

The DB->set_partition_dirs() method returns a non-zero error value on failure and 0 on
success.

Parameters
dirs

The dirs points to an array of directories that will be used to create or locate the database
extent files specified to the DB->open() (page 70) method. The directories must be included in
the environment list specified by DB_ENV->add_data_dir() (page 206).

Errors

The DB->set_partition_dirs() method may fail and return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.
Class

DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 131



Library Version 12.1.6.1 The DB Handle

DB->set_priority()

#tinclude <db.h>

int
DB->set_priority(DB *db, DB_CACHE_PRIORITY priority);

Set the cache priority for pages referenced by the DB handle.

The priority of a page biases the replacement algorithm to be more or less likely to discard a
page when space is needed in the buffer pool. The bias is temporary, and pages will eventually
be discarded if they are not referenced again. The DB->set_priority() method is only
advisory, and does not guarantee pages will be treated in a specific way.

The DB->set_priority() method may be called at any time during the life of the
application.

The DB->set_priority() method returns a non-zero error value on failure and 0 on success.
Parameters
priority
The priority parameter must be set to one of the following values:
o DB_PRIORITY_VERY_LOW
The lowest priority: pages are the most likely to be discarded.
e DB_PRIORITY_LOW
The next lowest priority.
e DB_PRIORITY_DEFAULT
The default priority.
e DB_PRIORITY_HIGH
The next highest priority.
e DB_PRIORITY_VERY_HIGH
The highest priority: pages are the least likely to be discarded.
Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 132



Library Version 12.1.6.1 The DB Handle

DB->set_q_extentsize()
#include <db.h>

int
DB->set_q_extentsize(DB *db, u_int32_t extentsize);

Set the size of the extents used to hold pages in a Queue database, specified as a number of
pages. Each extent is created as a separate physical file. If no extent size is set, the default
behavior is to create only a single underlying database file.

For information on tuning the extent size, see Selecting a extent size.

The DB->set_q_extentsize() method configures a database, not only operations performed
using the specified DB handle.

The DB->set_q_extentsize() method may not be called after the DB->open() (page 70)
method is called. If the database already exists when DB->open() (page 70) is called, the
information specified to DB->set_q_extentsize() will be ignored.

The DB->set_q_extentsize() method returns a non-zero error value on failure and 0 on
success.

Parameters

extentsize

The extentsize parameter is the number of pages in a Queue database extent.
Errors

The DB->set_q_extentsize() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 133


../../programmer_reference/rq_conf.html#am_conf_extentsize

Library Version 12.1.6.1 The DB Handle

DB->set_re_delim()

#tinclude <db.h>

int
DB->set_re_delim(DB *db, int re_delim);

Set the delimiting byte used to mark the end of a record in the backing source file for the
Recno access method.

This byte is used for variable length records if the re_source file is specified using the DB-
>set_re_source() (page 137) method. If the re_source file is specified and no delimiting byte
was specified, <newline> characters (that is, ASCII Ox0a) are interpreted as end-of-record
markers.

The DB->set_re_delim() method configures a database, not only operations performed using
the specified DB handle.

The DB->set_re_delim() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_re_delim() will be ignored.

The DB->set_re_delim() method returns a non-zero error value on failure and 0 on success.
Parameters
re_delim
The re_delim parameter is the delimiting byte used to mark the end of a record.
Errors
The DB->set_re_delim() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 134



Library Version 12.1.6.1 The DB Handle

DB->set_re_len()
#include <db.h>

int
DB->set _re_len(DB *db, u_int32 t re_len);

For the Queue access method, specify that the records are of length re_len. For the Queue
access method, the record length must be enough smaller than the database'’s page size that
at least one record plus the database page's metadata information can fit on each database

page.

For the Recno access method, specify that the records are fixed-length, not byte-delimited,
and are of length re_len.

Any records added to the database that are less than re_len bytes long are automatically
padded (see DB->set_re_pad() (page 136) for more information).

Any attempt to insert records into the database that are greater than re_len bytes long will
cause the call to fail immediately and return an error.

The DB->set_re_len() method configures a database, not only operations performed using
the specified DB handle.

The DB->set_re_len() method may not be called after the DB->open() (page 70) method is
called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_re_len() will be ignored.

The DB->set_re_len() method returns a non-zero error value on failure and 0 on success.
Parameters

re_len

The re_len parameter is the length of a Queue or Recno database record, in bytes.
Errors

The DB->set_re_len() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 135



Library Version 12.1.6.1 The DB Handle

DB->set_re_pad()

#tinclude <db.h>

int
DB->set_re_pad(DB *db, int re_pad);

Set the padding character for short, fixed-length records for the Queue and Recno access
methods.

If no pad character is specified, <space> characters (that is, ASCII 0x20) are used for padding.

The DB->set_re_pad() method configures a database, not only operations performed using
the specified DB handle.

The DB->set_re_pad() method may not be called after the DB->open() (page 70) method is
called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_re_pad() will be ignored.

The DB->set_re_pad() method returns a non-zero error value on failure and 0 on success.
Parameters
re_pad

The re_pad parameter is the pad character for fixed-length records for the Queue and Recno
access methods.

Errors
The DB->set_re_pad() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 136



Library Version 12.1.6.1 The DB Handle

DB->set_re_source()

#tinclude <db.h>

int
DB->set_re_source(DB *db, char *source);

Set the underlying source file for the Recno access method. The purpose of the source value is
to provide fast access and modification to databases that are normally stored as flat text files.

The source parameter specifies an underlying flat text database file that is read to initialize
a transient record number index. In the case of variable length records, the records are
separated, as specified by DB->set_re_delim() (page 134). For example, standard UNIX

byte stream files can be interpreted as a sequence of variable length records separated by
<newline> characters.

In addition, when cached data would normally be written back to the underlying database file
(for example, the DB->close() (page 13) or DB->sync() (page 150) methods are called), the in-
memory copy of the database will be written back to the source file.

By default, the backing source file is read lazily; that is, records are not read from the file
until they are requested by the application. If multiple processes (not threads) are accessing
a Recno database concurrently, and are either inserting or deleting records, the backing
source file must be read in its entirety before more than a single process accesses the
database, and only that process should specify the backing source file as part of the DB-
>open() (page 70) call. See the DB_SNAPSHOT flag for more information.

Reading and writing the backing source file specified by source cannot be transaction-
protected because it involves filesystem operations that are not part of the Db transaction
methodology. For this reason, if a temporary database is used to hold the records, it is
possible to lose the contents of the source file, for example, if the system crashes at the right
instant. If a file is used to hold the database, normal database recovery on that file can be
used to prevent information loss, although it is still possible that the contents of source will
be lost if the system crashes.

The source file must already exist (but may be zero-length) when DB->open() (page 70) is
called.

It is not an error to specify a read-only source file when creating a database, nor is it an error
to modify the resulting database. However, any attempt to write the changes to the backing
source file using either the DB->sync() (page 150) or DB->close() (page 13) methods will fail,
of course. Specify the DB_NOSYNC flag to the DB->close() (page 13) method to stop it from
attempting to write the changes to the backing file; instead, they will be silently discarded.

For all of the previous reasons, the source field is generally used to specify databases that are
read-only for Berkeley DB applications; and that are either generated on the fly by software
tools or modified using a different mechanism — for example, a text editor.

The DB->set_re_source() method configures operations performed using the specified DB
handle, not all operations performed on the underlying database.

2/17/2015

DB C API Page 137



Library Version 12.1.6.1 The DB Handle

The DB->set_re_source() method may not be called after the DB->open() (page 70) method
is called. If the database already exists when DB->open() (page 70) is called, the information
specified to DB->set_re_source() must be the same as that historically used to create the

database or corruption can occur.

The DB->set_re_source() method returns a non-zero error value on failure and 0 on success.

Parameters
source
The backing flat text database file for a Recno database.

When using a Unicode build on Windows (the default), the source argument will be
interpreted as a UTF-8 string, which is equivalent to ASCII for Latin characters.

Errors
The DB->set_re_source() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

Class
DB

See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 138



Library Version 12.1.6.1 The DB Handle

DB->sort_multiple()

#tinclude <db.h>

int
DB->sort_multiple(DB *db, DBT *key, DBT *data, u_int32_t flags);

The DB->sort_multiple() method is used to sort a set of DBTs into database insert order.

If specified the application specific btree comparison and duplicate comparison functions will
be used if they are configured.

The key and data parameters must contain pairs of items. That is the n-th entry in key must
correspond to the n-th entry in data.

The DB->sort_multiple() method returns a non-zero error value on failure and 0 on success.

Parameters
key

The key parameter must contain a set of DBT entries in DB_MULTIPLE or DB_MULTIPLE_KEY
format.

The sorted entries will be returned in the key parameter.
data

If non-NULL, the data parameter must contain a set of DBTs entries in DB_MULTIPLE format.
Each entry must correspond to an entry in the key parameter.

flags
The flags parameter must be set to one of the following values:
o DB_MULTIPLE

Sorts one or two DB_MULTIPLE format DBTs. Assumes that key and data specify pairs of
key and data items to sort together. If the data parameter is NULL the API will sort the key
arrays according to the btree comparison function.

o DB_MULTIPLE_KEY
Sorts a DB_MULTIPLE_KEY format DBT.
Errors
The DB->sort_multiple() method may fail and return one of the following non-zero errors:
EACCES

An attempt was made to modify a read-only database.

2/17/2015 DB C API Page 139



Library Version 12.1.6.1 The DB Handle

EINVAL

An invalid flag value or parameter was specified.
Class

DB
See Also

Database and Related Methods (page 3)

DBT and Bulk Operations (page 189)

2/17/2015 DB C API Page 140



Library Version 12.1.6.1 The DB Handle

DB->stat()

#tinclude <db.h>

int
DB->stat(DB *db, DB_TXN *txnid, void *sp, u_int32_t flags);
The DB->stat () method creates a statistical structure and copies a pointer to it into user-

specified memory locations. Specifically, if sp is non-NULL, a pointer to the statistics for the
database are copied into the memory location to which it refers.

The DB->stat () method returns a non-zero error value on failure and 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 627); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 619); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected.

flags
The flags parameter must be set to 0 or one of the following values:
o DB_FAST_STAT

Return only the values which do not require traversal of the database. Among other things,
this flag makes it possible for applications to request key and record counts without
incurring the performance penalty of traversing the entire database.

e DB_READ_COMMITTED

Database items read during a transactional call will have degree 2 isolation. This ensures
the stability of the data items read during the stat operation but permits that data to be
modified or deleted by other transactions prior to the commit of the specified transaction.

e DB_READ_UNCOMMITTED

Database items read during a transactional call will have degree 1 isolation, including
modified but not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag
was not specified when the underlying database was opened.

Statistical Structure

Statistical structures are stored in allocated memory. If application-specific allocation routines
have been declared (see DB_ENV->set_alloc() (page 264) for more information), they are
used to allocate the memory; otherwise, the standard C library malloc(3) is used. The caller

2/17/2015

DB C API Page 141



Library Version 12.1.6.1 The DB Handle

is responsible for deallocating the memory. To deallocate the memory, free the memory
reference; references inside the returned memory need not be individually freed.

If the DB_FAST_STAT flag has not been specified, the DB->stat() method will access some of
or all the pages in the database, incurring a severe performance penalty as well as possibly
flushing the underlying buffer pool.

In the presence of multiple threads or processes accessing an active database, the information
returned by DB->stat may be out-of-date.

If the database was not opened read-only and the DB_FAST_STAT flag was not specified, the
cached key and record numbers will be updated after the statistical information has been
gathered.

The DB->stat() method may not be called before the DB->open() (page 70) method is called.
The DB->stat () method returns a non-zero error value on failure and 0 on success.
Hash Statistics

In the case of a Hash database, the statistics are stored in a structure of type DB_HASH_STAT.
The following fields will be filled in:

e uintmax_t hash_bfree;

The number of bytes free on bucket pages.
e u_int32_t hash_bigpages;

The number of hash overflow pages (created when key/data is too big for the page).
e uintmax_t hash_big bfree;

The number of bytes free on hash overflow (big item) pages.
e u_int32_t hash_buckets;

The number of hash buckets. Returned if DB_FAST_STAT is set.
e u_int32_t hash_dup;

The number of duplicate pages.
e uintmax_t hash_dup_free;

The number of bytes free on duplicate pages.
e u_int32_t hash_ffactor;

The desired fill factor (number of items per bucket) specified at database-creation time.
Returned if DB_FAST_STAT is set.

u_int32_t hash_free;

2/17/2015

DB C API Page 142



Library Version 12.1.6.1 The DB Handle

The number of pages on the free list.
e u_int32_t hash_magic;
Magic number that identifies the file as a Hash file. Returned if DB_FAST_STAT is set.
e u_int32_t hash_metaflags;
Reports internal flags. For internal use only.
e u_int32_t hash_nblobs;
The number of blobs.
e u_int32_t hash_ndata;
The number of key/data pairs in the database. If DB_FAST_STAT was specified the count
will be the last saved value unless it has never been calculated, in which case it will be 0.
Returned if DB_FAST_STAT is set.
e u_int32_t hash_nkeys;

The number of unique keys in the database. If DB_FAST_STAT was specified the count will be
the last saved value unless it has never been calculated, in which case it will be 0. Returned
if DB_FAST_STAT is set.

e u_int32_t hash_overflows;

The number of bucket overflow pages (bucket overflow pages are created when items did
not fit on the main bucket page).

¢ uintmax_t hash_ovfl_free;
The number of bytes free on bucket overflow pages.
e u_int32_t hash_pagecnt;
The number of pages in the database. Returned if DB_FAST_STAT is set.
e u_int32_t hash_pagesize;
The underlying database page (and bucket) size, in bytes. Returned if DB_FAST_STAT is set.
e u_int32_t hash_version;
The version of the Hash database. Returned if DB_FAST_STAT is set.
Heap Statistics

In the case of a Heap database, the statistics are stored in a structure of type DB_HEAP_STAT.
The following fields will be filled in:

2/17/2015

DB C API Page 143



Library Version 12.1.6.1 The DB Handle

u_int32_t heap_magic;
Magic number that identifies the file as a Heap file. Returned if DB_FAST_STAT is set.
e u_int32_t heap_metaflags;
Reports internal flags. For internal use only.
e u_int32_t heap_nblobs;
The number of blobs.
e u_int32_t heap_nrecs;
Reports the number of records in the Heap database. Returned if DB_FAST_STAT is set.
e u_int32_t heap_pagecnt;
The number of pages in the database. Returned if DB_FAST_STAT is set.
e u_int32_t heap_pagesize;
The underlying database page (and bucket) size, in bytes. Returned if DB_FAST_STAT is set.
e u_int32_t heap_nregions;
The number of regions in the Heap database. Returned if DB_FAST_STAT is set.
e u_int32_t heap_regionsize;
The number of pages in a region in the Heap database. Returned if DB_FAST_STAT is set.
e u_int32_t heap_version;
The version of the Heap database. Returned if DB_FAST_STAT is set.
Btree and Recno Statistics

In the case of a Btree or Recno database, the statistics are stored in a structure of type
DB_BTREE_STAT. The following fields will be filled in:

e u_int32_t bt_dup_pg;

Number of database duplicate pages.
e uintmax_t bt_dup_pgfree;

Number of bytes free in database duplicate pages.
e u_int32_t bt_empty pg;

Number of empty database pages.

2/17/2015

DB C API Page 144



Library Version 12.1.6.1 The DB Handle

u_int32_t bt_free;

Number of pages on the free list.

u_int32_t bt_int_pg;

Number of database internal pages.

uintmax_t bt_int_pgfree;

Number of bytes free in database internal pages.
u_int32_t bt_leaf_pg;

Number of database leaf pages.

uintmax_t bt_leaf_pgfree;

Number of bytes free in database leaf pages.
u_int32_t bt_levels;

Number of levels in the database.

u_int32_t bt_magic;

Magic number that identifies the file as a Btree database. Returned if DB_FAST_STAT is set.
u_int32_t bt_metaflags;

Reports internal flags. For internal use only.
u_int32_t bt_minkey;

The minimum keys per page. Returned if DB_FAST_STAT is set.
u_int32_t bt_nblobs;

The number of blobs.

u_int32_t bt_ndata;

For the Btree Access Method, the number of key/data pairs in the database. If the
DB_FAST_STAT flag is not specified, the count will be exact. Otherwise, the count will be
the last saved value unless it has never been calculated, in which case it will be 0.

For the Recno Access Method, the number of records in the database. If the database was
configured with mutable record numbers (see DB_RENUMBER), the count will be exact.
Otherwise, if the DB_FAST_STAT flag is specified the count will be exact but will include
deleted and implicitly created records; if the DB_FAST_STAT flag is not specified, the count
will be exact and will not include deleted or implicitly created records.

Returned if DB_FAST_STAT is set.

2/17/2015

DB C API Page 145



Library Version 12.1.6.1 The DB Handle

e u_int32_t bt_nkeys;

For the Btree Access Method, the number of keys in the database. If the DB_FAST_STAT
flag is not specified or the database was configured to support record numbers (see
DB_RECNUM), the count will be exact. Otherwise, the count will be the last saved value
unless it has never been calculated, in which case it will be 0.

For the Recno Access Method, the number of records in the database. If the database was
configured with mutable record numbers (see DB_RENUMBER), the count will be exact.
Otherwise, if the DB_FAST_STAT flag is specified the count will be exact but will include
deleted and implicitly created records; if the DB_FAST_STAT flag is not specified, the count
will be exact and will not include deleted or implicitly created records.

Returned if DB_FAST_STAT is set.
e u_int32_t bt_over_pg;
Number of database overflow pages.
e uintmax_t bt_over_pgfree;
Number of bytes free in database overflow pages.
e u_int32_t bt_pagecnt;
The number of pages in the database. Returned if DB_FAST_STAT is set.
e u_int32_t bt_pagesize;
The underlying database page size, in bytes. Returned if DB_FAST_STAT is set.
e u_int32_t bt_re_len;
The length of fixed-length records. Returned if DB_FAST_STAT is set.
e u_int32_t bt_re_pad;
The padding byte value for fixed-length records. Returned if DB_FAST_STAT is set.
e u_int32_t bt_version;
The version of the Btree database. Returned if DB_FAST_STAT is set.
Queue Statistics

In the case of a Queue database, the statistics are stored in a structure of type
DB_QUEUE_STAT. The following fields will be filled in:

e u_int32_t gs_cur_recno;
Next available record number. Returned if DB_FAST_STAT is set.

e u_int32_t gs_extentsize;

2/17/2015 DB C API Page 146



Library Version 12.1.6.1 The DB Handle

Underlying database extent size, in pages. Returned if DB_FAST_STAT is set.
u_int32_t gs_first_recno;

First undeleted record in the database. Returned if DB_FAST_STAT is set.

u_int32_t gqs_magic;

Magic number that identifies the file as a Queue file. Returned if DB_FAST_STAT is set.
u_int32_t gqs_metaflags;

Reports internal flags. For internal use only.

u_int32_t gs_nkeys;

The number of records in the database. If DB_FAST_STAT was specified the count will be the
last saved value unless it has never been calculated, in which case it will be 0. Returned if
DB_FAST_STAT is set.

u_int32_t gs_ndata;

The number of records in the database. If DB_FAST_STAT was specified the count will be the
last saved value unless it has never been calculated, in which case it will be 0. Returned if
DB_FAST_STAT is set.

u_int32_t qs_pages;

Number of pages in the database.

u_int32_t qs_pagesize;

Underlying database page size, in bytes. Returned if DB_FAST_STAT is set.
u_int32_t qs_pgfree;

Number of bytes free in database pages.

u_int32_t gs_re_len;

The length of the records. Returned if DB_FAST_STAT is set.

u_int32_t gs_re_pad;

The padding byte value for the records. Returned if DB_FAST_STAT is set.
u_int32_t gs_version;

The version of the Queue file type. Returned if DB_FAST_STAT is set.

The DB->stat () method may fail and return one of the following non-zero errors:

2/17/2015

DB C API Page 147



Library Version 12.1.6.1 The DB Handle

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.
EINVAL
An invalid flag value or parameter was specified.
Class

DB

See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 148



Library Version 12.1.6.1 The DB Handle

DB->stat_print()

#tinclude <db.h>

int
DB->stat_print(DB *db, u_int32_t flags);

The DB->stat_print() method displays the database statistical information, as described for
the DB->stat() (page 141) method. The information is printed to a specified output channel
(see the DB_ENV->set_msgfile() (page 311) method for more information), or passed to an
application callback function (see the DB_ENV->set_msgcall() (page 309) method for more
information).

The DB->stat_print() method may not be called before the DB->open() (page 70) method is
called.

The DB->stat_print() method returns a non-zero error value on failure and 0 on success.

For Berkeley DB SQL table or index statistics, see Command Line Features Unique to
dbsql (page 709).

Parameters
flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

o DB_FAST_STAT
Return only the values which do not require traversal of the database. Among other things,
this flag makes it possible for applications to request key and record counts without
incurring the performance penalty of traversing the entire database.
o DB_STAT ALL
Display all available information.
Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 149



Library Version 12.1.6.1 The DB Handle

DB->sync()

#tinclude <db.h>

int
DB->sync(DB *db, u_int32_t flags);

The DB->sync () method flushes any cached information to disk. This method operates on
the database file level, so if the file contains multiple database handles then this method will
flush to disk any information that is cached for any of those handles.

If the database is in memory only, the DB->sync() method has no effect and will always
succeed.

It is important to understand that flushing cached information to disk only minimizes the
window of opportunity for corrupted data. Although unlikely, it is possible for database
corruption to happen if a system or application crash occurs while writing data to the
database. To ensure that database corruption never occurs, applications must either: use
transactions and logging with automatic recovery; use logging and application-specific
recovery; or edit a copy of the database, and once all applications using the database have
successfully called DB->close() (page 13), atomically replace the original database with the
updated copy.

The DB->sync () method returns a non-zero error value on failure and 0 on success.

Parameters

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DB->sync() method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.
EINVAL

An invalid flag value or parameter was specified.

2/17/2015

DB C API Page 150



Library Version 12.1.6.1 The DB Handle

Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 151



Library Version 12.1.6.1 The DB Handle

DB->truncate()

#tinclude <db.h>

int
DB->truncate(DB *db,
DB_TXN *txnid, u_int32_t *countp, u_int32_t flags);

The DB->truncate() method empties the database, discarding all records it contains. The
number of records discarded from the database is returned in countp.

When called on a database configured with secondary indices using the DB->associate() (page
6) method, the DB->truncate() method truncates the primary database and all secondary
indices. A count of the records discarded from the primary database is returned.

It is an error to call the DB->truncate() method on a database with open cursors.

The DB->truncate() method returns a non-zero error value on failure and 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 627); if the operation is part
of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned
from DB_ENV->cdsgroup_begin() (page 619); otherwise NULL. If no transaction handle

is specified, but the operation occurs in a transactional database, the operation will be
implicitly transaction protected.

countp

The countp parameter references memory into which the number of records discarded from
the database is copied.

flags

The flags parameter is currently unused, and must be set to 0.

Errors

The DB->truncate() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

2/17/2015

DB C API Page 152



Library Version 12.1.6.1 The DB Handle

You attempted to open a database handle that is configured for no waiting exclusive locking,

but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

EINVAL

If there are open cursors in the database; or if an invalid flag value or parameter was
specified.

Class
DB

See Also

Database and Related Methods (page 3)

2/17/2015 DB C API

Page 153



Library Version 12.1.6.1 The DB Handle

DB->upgrade()

#tinclude <db.h>

int
DB->upgrade(DB *db, const char *file, u_int32_t flags);

The DB->upgrade () method upgrades all of the databases included in the file file, if
necessary. If no upgrade is necessary, DB->upgrade () always returns success.

Database upgrades are done in place and are destructive. For example, if pages need to
be allocated and no disk space is available, the database may be left corrupted. Backups
should be made before databases are upgraded. See Upgrading databases for more
information.

Unlike all other database operations, DB->upgrade() may only be done on a system with the
same byte-order as the database.

The DB->upgrade() method returns a non-zero error value on failure and 0 on success.

The DB->upgrade () method is the underlying method used by the db_upgrade utility. See the
db_upgrade utility source code for an example of using DB->upgrade() in a IEEE/ANSI Std
1003.1 (POSIX) environment.

Parameters

file

The file parameter is the physical file containing the databases to be upgraded.
flags

The flags parameter must be set to 0 or the following value:

e DB_DUPSORT

This flag is only meaningful when upgrading databases from releases before the Berkeley
DB 3.1 release.

As part of the upgrade from the Berkeley DB 3.0 release to the 3.1 release, the on-

disk format of duplicate data items changed. To correctly upgrade the format requires
applications to specify whether duplicate data items in the database are sorted or not.
Specifying the DB_DUPSORT flag informs DB->upgrade() that the duplicates are sorted;
otherwise they are assumed to be unsorted. Incorrectly specifying the value of this flag may
lead to database corruption.

Further, because the DB->upgrade() method upgrades a physical file (including all the
databases it contains), it is not possible to use DB->upgrade() to upgrade files in which
some of the databases it includes have sorted duplicate data items, and some of the
databases it includes have unsorted duplicate data items. If the file does not have more
than a single database, if the databases do not support duplicate data items, or if all of the

2/17/2015

DB C API Page 154


../../programmer_reference/am_upgrade.html

Library Version 12.1.6.1 The DB Handle

databases that support duplicate data items support the same style of duplicates (either
sorted or unsorted), DB->upgrade() will work correctly as long as the DB_DUPSORT flag is
correctly specified. Otherwise, the file cannot be upgraded using DB->upgrade; () it must
be upgraded manually by dumping and reloading the databases.

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

DB->upgrade() is affected by any database directory specified using the DB_ENV-
>add_data_dir() (page 206) method, or by setting the "add_data_dir" string in the
environment's DB_CONFIG file.

Errors
The DB->upgrade() method may fail and return one of the following non-zero errors:
DB_OLD_VERSION
The database cannot be upgraded by this version of the Berkeley DB software.
Class
DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 155


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB Handle

DB->verify()

#tinclude <db.h>

int
DB->verify(DB *db, const char *file,
const char *database, FILE *outfile, u_int32_t flags);

The DB->verify() method verifies the integrity of all databases in the file specified by
the file parameter, and optionally outputs the databases’ key/data pairs to the file stream
specified by the outfile parameter.

The DB->verify() method does not perform any locking, even in Berkeley DB
environments that are configured with a locking subsystem. As such, it should only be
used on files that are not being modified by another thread of control.

The DB->verify() method may not be called after the DB->open() (page 70) method is
called.

The DB handle may not be accessed again after DB->verify() is called, regardless of its
return.

The DB->verify() method is the underlying method used by the db_verify utility. See the
db_verify utility source code for an example of using DB->verify() in a IEEE/ANSI Std 1003.1
(POSIX) environment.

The DB->verify() method will return DB_VERIFY_BAD if a database is corrupted. When the
DB_SALVAGE flag is specified, the DB_VERIFY_BAD return means that all key/data pairs in the
file may not have been successfully output. Unless otherwise specified, the DB->verify()
method returns a non-zero error value on failure and 0 on success.

Parameters

file
The file parameter is the physical file in which the databases to be verified are found.
database

The database parameter is the database in file on which the database checks for btree and
duplicate sort order and for hashing are to be performed. See the DB_ORDERCHKONLY flag for
more information.

The database parameter must be set to NULL except when the DB_ORDERCHKONLY flag is set.
outfile

The outfile parameter is an optional file stream to which the databases' key/data pairs are
written.

flags

The flags parameter must be set to 0 or the following value:

2/17/2015

DB C API Page 156



Library Version 12.1.6.1 The DB Handle

e DB_SALVAGE

Write the key/data pairs from all databases in the file to the file stream named in the
outfile parameter. Key values are written for Btree, Hash and Queue databases, but not for
Recno databases.

The output format is the same as that specified for the db_dump utility, and can be used as
input for the db_load utility.

Because the key/data pairs are output in page order as opposed to the sort order used by
db_dump, using DB->verify() to dump key/data pairs normally produces less than optimal
loads for Btree databases.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags
parameter:

e DB_AGGRESSIVE

Output all the key/data pairs in the file that can be found. By default, DB->verify() does
not assume corruption. For example, if a key/data pair on a page is marked as deleted,

it is not then written to the output file. When DB_AGGRESSIVE is specified, corruption is
assumed, and any key/data pair that can be found is written. In this case, key/data pairs
that are corrupted or have been deleted may appear in the output (even if the file being
salvaged is in no way corrupt), and the output will almost certainly require editing before
being loaded into a database.

e DB_PRINTABLE

When using the DB_SALVAGE flag, if characters in either the key or data items are printing
characters (as defined by isprint(3)), use printing characters to represent them. This flag
permits users to use standard text editors and tools to modify the contents of databases or
selectively remove data from salvager output.

Note: different systems may have different notions about what characters are considered
printing characters, and databases dumped in this manner may be less portable to external
systems.

e DB_NOORDERCHK
Skip the database checks for btree and duplicate sort order and for hashing.

The DB->verify() method normally verifies that btree keys and duplicate items are
correctly sorted, and hash keys are correctly hashed. If the file being verified contains
multiple databases using differing sorting or hashing algorithms, some of them must
necessarily fail database verification because only one sort order or hash function can be
specified before DB->verify() is called. To verify files with multiple databases having
differing sorting orders or hashing functions, first perform verification of the file as a whole
by using the DB_NOORDERCHK flag, and then individually verify the sort order and hashing
function for each database in the file using the DB_ORDERCHKONLY flag.

e DB_ORDERCHKONLY

2/17/2015 DB C API Page 157



Library Version 12.1.6.1 The DB Handle

Perform the database checks for btree and duplicate sort order and for hashing, skipped by
DB_NOORDERCHK.

When this flag is specified, a database parameter should also be specified, indicating
the database in the physical file which is to be checked. This flag is only safe to use on
databases that have already successfully been verified using DB->verify() with the
DB_NOORDERCHK flag set.

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME
may be used as the path of the database environment home.

DB->verify() is affected by any database directory specified using the DB_ENV-
>add_data_dir() (page 206) method, or by setting the "add_data_dir" string in the
environment's DB_CONFIG file.

Errors
The DB->verify() method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() (page 70) was called; or if an invalid flag value or
parameter was specified.

ENOENT

The file or directory does not exist.
Class

DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 158


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB Handle

DB_HEAP_RID

#tinclude <db.h>

struct _ db_heap_rid {
db_pgno_t pgno; /* Page number. */
db_indx_t indx; /* Index in the offset table. */

};

Content used for the key in a Heap database record. Berkeley DB creates this structure for you
when you create a record in a Heap database. You should never create this structure or modify
the contents of this structure yourself; Berkeley DB must create and manage it for you.

This structure is returned in the key DBT parameter of the method that you use to add a
record to the Heap database.

Parameters

pgno

The database page number where the record is stored.
indx
Index in the offset table where the record can be found.

See Also

Database and Related Methods (page 3),

2/17/2015 DB C API Page 159



Chapter 3. The DBcursor Handle

A DBcursor object is a handle for a cursor into a Berkeley DB database.

DBcursor handles are not free-threaded. Cursor handles may be shared by multiple threads if
access is serialized by the application.

You create a DBcursor using the DB->cursor() (page 162) method.

If the cursor is to be used to perform operations on behalf of a transaction, the cursor must be
opened and closed within the context of that single transaction.

Once DBcursor->close() (page 164) has been called, the handle may not be accessed again,
regardless of the method's return.

2/17/2015

DB C API Page 160



Library Version 12.1.6.1

The DBcursor Handle

Database Cursors and Related Methods

Database Cursors and Related
Methods

Description

DB->cursor()

Create a cursor handle

DBcursor->close()

Close a cursor handle

DBcursor->cmp()

Compare two cursors for equality.

DBcursor->count()

Return count of duplicates for current key

DBcursor->del()

Delete current key/data pair

DBcursor->dup()

Duplicate the cursor handle

DBcursor->get()

Retrieve by cursor

DBcursor->put()

Store by cursor

DBcursor->set_priority(), DBcursor-
>get_priority()

Set/get the cursor's cache priority

2/17/2015

DB C API

Page 161




Library Version 12.1.6.1 The DBcursor Handle

DB->cursor()

#include <db.h>

int
DB->cursor(DB *db, DB_TXN *txnid, DBC **cursorp, u_int32 t flags);

The DB->cursor() method returns a created database cursor.

Cursors may span threads, but only serially, that is, the application must serialize access to
the cursor handle.

The DB->cursor() method returns a non-zero error value on failure and 0 on success.

Parameters

txnid

To transaction-protect cursor operations, cursors must be opened and closed within the
context of a transaction. The txnid parameter specifies the transaction context in which the
cursor may be used.

Cursor operations are not automatically transaction-protected, even if the DB_AUTO_COMMIT
flag is specified to the DB_ENV->set_flags() (page 293) or DB->open() (page 70) methods. If
cursor operations are to be transaction-protected, the txnid parameter must be a transaction
handle returned from DB_ENV->txn_begin() (page 627); otherwise, NULL.

cursorp

The cursorp parameter references memory into which a pointer to the allocated cursor is
copied.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

+ DB_CURSOR_BULK

Configure a cursor to optimize for bulk operations. Each successive operation on a cursor
configured with this flag attempts to continue on the same database page as the previous
operation, falling back to a search if a different page is required. This avoids searching

if there is a high degree of locality between cursor operations. This flag is currently only

effective with the btree access method. For other access methods, this flag is ignored.

e DB_READ_COMMITTED

Configure a transactional cursor to have degree 2 isolation. This ensures the stability of the
current data item read by this cursor but permits data read by this cursor to be modified or
deleted prior to the commit of the transaction for this cursor.

e DB_READ_UNCOMMITTED

2/17/2015

DB C API Page 162



Library Version 12.1.6.1 The DBcursor Handle

Errors

Configure a transactional cursor to have degree 1 isolation. Read operations performed
by the cursor may return modified but not yet committed data. Silently ignored if the
DB_READ_UNCOMMITTED flag was not specified when the underlying database was opened.

DB_WRITECURSOR

Specify that the cursor will be used to update the database. The underlying database
environment must have been opened using the DB_INIT_CDB flag.

DB_TXN_SNAPSHOT

Configure a transactional cursor to operate with read-only snapshot isolation. For databases
with the DB_MULTIVERSION flag set, data values will be read as they are when the cursor is
opened, without taking read locks.

This flag implicitly begins a transaction that is committed when the cursor is closed.

This flag is silently ignored if DB_MULTIVERSION is not set on the underlying database or if
a transaction is supplied in the txnid parameter. Snapshot isolation is not supported with
replication.

The DB->cursor() method may fail and return one of the following non-zero errors:

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

EINVAL

An invalid flag value or parameter was specified.

Class

DB

See Also

Database Cursors and Related Methods (page 161)

2/17/2015

DB C API Page 163


../../programmer_reference/transapp_read.html

Library Version 12.1.6.1 The DBcursor Handle

DBcursor->close()

#include <db.h>
int
DBcursor->close(DBC *DBcursor);

The DBcursor->close() method discards the cursor.

It is possible for the DBcursor->close() method to return DB_LOCK_DEADLOCK, signaling
that any enclosing transaction should be aborted. If the application is already intending to
abort the transaction, this error should be ignored, and the application should proceed.

After the DBcursor->close() method has been called, regardless of its return value, you can
not use the cursor handle again.

It is not required to close the cursor explicitly before closing the database handle or the
transaction handle that owns this cursor because, closing a database handle or a transaction
handle closes those open cursors.

However, it is recommended that you always close all cursor handles immediately after their
use to promote concurrency and to release resources such as page locks.

The DBcursor->close() method returns a non-zero error value on failure and 0 on success.

Errors

The DBcursor->close() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.

Class

DBcursor

See Also

Database Cursors and Related Methods (page 161)

2/17/2015

DB C API Page 164


../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK

Library Version 12.1.6.1 The DBcursor Handle

DBcursor->cmp()
#include <db.h>

int
DBcursor->cmp(DBC *DBcursor,
DBC *other_cursor, int *result, u_int32_t flags);

The DBcursor->cmp() method compares two cursors for equality. Two cursors are equal if and
only if they are positioned on the same item in the same database.

The DBcursor->cmp() method returns a non-zero error value on failure and 0 on success.

Parameters
other_cursor

The other_cursor parameter references another cursor handle that will be used as the
comparator.

result

If the call is successful and both cursors are positioned on the same item, result is set to zero.
If the call is successful but the cursors are not positioned on the same item, result is set to a
non-zero value. If the call is unsuccessful, the value of result should be ignored.

flags
The flags parameter is currently unused, and must be set to 0.
Errors
The DBcursor->cmp() method may fail and return one of the following non-zero errors:
EINVAL
« If either of the cursors are already closed.

« If the cursors have been opened against different databases.

If either of the cursors have not been positioned.

If the other_dbc parameter is NULL.

If the result parameter is NULL.
Class
DBcursor

See Also

Database Cursors and Related Methods (page 161)

2/17/2015 DB C API Page 165



Library Version 12.1.6.1 The DBcursor Handle

DBcursor->count()
#include <db.h>

int
DBcursor->count(DBC *DBcursor, db_recno_t *countp, u_int32_t flags);

The DBcursor->count() method returns a count of the number of data items for the key to
which the cursor refers.

The DBcursor->count() method returns a non-zero error value on failure and 0 on success.

Parameters
countp

The countp parameter references memory into which the count of the number of duplicate
data items is copied.

flags
The flags parameter is currently unused, and must be set to 0.
Errors
The DBcursor->count() method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

EINVAL

If the cursor has not been initialized; or if an invalid flag value or parameter was specified.
Class

DBcursor
See Also

Database Cursors and Related Methods (page 161)

2/17/2015 DB C API Page 166



Library Version 12.1.6.1 The DBcursor Handle

DBcursor->del()

#tinclude <db.h>

int
DBcursor->del(DBC *DBcursor, u_int32_t flags);

The DBcursor->del() method deletes the key/data pair to which the cursor refers.

When called on a cursor opened on a database that has been made into a secondary index
using the DB->associate() (page 6) method, the DB->del() (page 23) method deletes the key/
data pair from the primary database and all secondary indices.

The cursor position is unchanged after a delete, and subsequent calls to cursor functions
expecting the cursor to refer to an existing key will fail.

The DBcursor->del() method will return DB_KEYEMPTY if the element has already been
deleted. The DBcursor->del() method returns a non-zero error value on failure and 0 on
success.

Parameters

flags
The flags parameter must be set to 0 or one of the following values:

e DB_CONSUME

If the database is of type DB_QUEUE then this flag may be set to force the head of the
queue to move to the first non-deleted item in the queue. Normally this is only done if the
deleted item is exactly at the head when deleted.

Errors

The DBcursor->del() method may fail and return one of the following non-zero errors:
DB_FOREIGN_CONFLICT
A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for
that record does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 11) was declared for a foreign key database, and then
subsequently a record was deleted from the foreign key database without first removing
it from the constrained secondary database.

DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

2/17/2015

DB C API Page 167


../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 12.1.6.1 The DBcursor Handle

DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EACCES

An attempt was made to modify a read-only database.

EINVAL

If the cursor has not been initialized; or if an invalid flag value or parameter was specified.
EPERM

Write attempted on read-only cursor when the DB_INIT_CDB flag was specified to DB_ENV-
>open() (page 256).

Class

DBcursor

See Also

Database Cursors and Related Methods (page 161)

2/17/2015

DB C API Page 168



Library Version 12.1.6.1 The DBcursor Handle

DBcursor->dup()

#tinclude <db.h>

int
DBcursor->dup(DBC *DBcursor, DBC **cursorp, u_int32_t flags);
The DBcursor->dup() method creates a new cursor that uses the same transaction and locker

ID as the original cursor. This is useful when an application is using locking and requires two or
more cursors in the same thread of control.

The DBcursor->dup() method returns a non-zero error value on failure and 0 on success.

Parameters

cursorp

The DBcursor->dup() method returns the newly created cursor in cursorp.
flags

The flags parameter must be set to 0 or the following flag:

e DB_POSITION

The newly created cursor is initialized to refer to the same position in the database as
the original cursor (if any) and hold the same locks (if any). If the DB_POSITION flag is
not specified, or the original cursor does not hold a database position and locks, the
created cursor is uninitialized and will behave like a cursor newly created using the DB-
>cursor() (page 162) method.

Errors

The DBcursor->dup() method may fail and return one of the following non-zero errors:

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.

EINVAL

An invalid flag value or parameter was specified.

2/17/2015

DB C API Page 169



Library Version 12.1.6.1 The DBcursor Handle

Class

DBcursor

See Also

Database Cursors and Related Methods (page 161)

2/17/2015 DB C API Page 170



Library Version 12.1.6.1 The DBcursor Handle

DBcursor->get()

#tinclude <db.h>

int
DBcursor->get(DBC *DBcursor,
DBT *key, DBT *data, u_int32_t flags);

int
DBcursor->pget(DBC *DBcursor,
DBT *key, DBT *pkey, DBT *data, u_int32_t flags);

The DBcursor->get() method retrieves key/data pairs from the database. The address and
length of the key are returned in the object to which key refers (except for the case of the
DB_SET flag, in which the key object is unchanged), and the address and length of the data
are returned in the object to which data refers.

When called on a cursor opened on a database that has been made into a secondary index
using the DB->associate() (page 6) method, the DBcursor->get() and DBcursor->pget()
methods return the key from the secondary index and the data item from the primary
database. In addition, the DBcursor->pget() method returns the key from the primary
database. In databases that are not secondary indices, the DBcursor->pget () method will
always fail.

Modifications to the database during a sequential scan will be reflected in the scan; that
is, records inserted behind a cursor will not be returned while records inserted in front of a
cursor will be returned.

In Queue and Recno databases, missing entries (that is, entries that were never explicitly
created or that were created and then deleted) will be skipped during a sequential scan.

Unless otherwise specified, the DBcursor->get() method returns a non-zero error value on
failure and 0 on success.

If DBcursor->get () fails for any reason, the state of the cursor will be unchanged.
Parameters

key

The key DBT operated on.

If DB_DBT_PARTIAL is set for the DBT used for this parameter, and if the flags parameter is set

to DB_GET_BOTH, DB_GET_BOTH_RANGE, DB_SET, or DB_SET_RECNO, then this method will
fail and return EINVAL.

pkey

The return key from the primary database. If DB_DBT_PARTIAL is set for the DBT used for this
parameter, then this method will fail and return EINVAL.

2/17/2015 DB C API Page 171



Library Version 12.1.6.1 The DBcursor Handle

data
The data DBT operated on.
flags
The flags parameter must be set to one of the following values:
e DB_CURRENT
Return the key/data pair to which the cursor refers.

The DBcursor->get() method will return DB_KEYEMPTY if DB_CURRENT is set and the
cursor key/data pair was deleted.

e DB_FIRST

The cursor is set to refer to the first key/data pair of the database, and that pair is
returned. If the first key has duplicate values, the first data item in the set of duplicates is
returned.

If the database is a Queue or Recno database, DBcursor->get () using the DB_FIRST flag
will ignore any keys that exist but were never explicitly created by the application, or were
created and later deleted.

The DBcursor->get () method will return DB_NOTFOUND if DB_FIRST is set and the
database is empty.

 DB_GET_BOTH

Move the cursor to the specified key/data pair of the database. The cursor is positioned
to a key/data pair if both the key and data match the values provided on the key and data
parameters.

In all other ways, this flag is identical to the DB_SET flag.

When used with DBcursor->pget() on a secondary index handle, both the secondary and
primary keys must be matched by the secondary and primary key item in the database. It
is an error to use the DB_GET_BOTH flag with the DBcursor->get () version of this method
and a cursor that has been opened on a secondary index handle.

« DB_GET_BOTH_RANGE

Move the cursor to the specified key/data pair of the database. The key parameter must
be an exact match with a key in the database. The data item retrieved is the item in a
duplicate set that is the smallest value which is greater than or equal to the value provided
by the data parameter (as determined by the comparison function). If this flag is specified
on a database configured without sorted duplicate support, the behavior is identical to the
DB_GET_BOTH flag. Returns the datum associated with the given key/data pair.

In all other ways, this flag is identical to the DB_GET_BOTH flag.

2/17/2015

DB C API Page 172


../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 12.1.6.1 The DBcursor Handle

« DB_GET_RECNO

Return the record number associated with the cursor. The record number will be returned in
data, as described in DBT. The key parameter is ignored.

For DB_GET_RECNO to be specified, the underlying database must be of type Btree, and it
must have been created with the DB_RECNUM flag.

When called on a cursor opened on a database that has been made into a secondary index,
the DBcursor->get() and DBcursor->pget() methods return the record number of the
primary database in data. In addition, the DBcursor->pget() method returns the record
number of the secondary index in pkey. If either underlying database is not of type Btree or
is not created with the DB_RECNUM flag, the out-of-band record number of 0 is returned.

DB_JOIN_ITEM

Do not use the data value found in all of the cursors as a lookup key for the primary
database, but simply return it in the key parameter instead. The data parameter is left
unchanged.

For DB_JOIN_ITEM to be specified, the underlying cursor must have been returned from the
DB->join() (page 65) method.

This flag is not supported for Heap databases.
DB_LAST

The cursor is set to refer to the last key/data pair of the database, and that pair is
returned. If the last key has duplicate values, the last data item in the set of duplicates is
returned.

If the database is a Queue or Recno database, DBcursor->get() using the DB_LAST flag
will ignore any keys that exist but were never explicitly created by the application, or were
created and later deleted.

The DBcursor->get() method will return DB_NOTFOUND if DB_LAST is set and the
database is empty.

DB_NEXT

If the cursor is not yet initialized, DB_NEXT is identical to DB_FIRST. Otherwise, the cursor is
moved to the next key/data pair of the database, and that pair is returned. In the presence
of duplicate key values, the value of the key may not change.

If the database is a Queue or Recno database, DBcursor->get() using the DB_NEXT flag
will skip any keys that exist but were never explicitly created by the application, or those
that were created and later deleted.

The DBcursor->get() method will return DB_NOTFOUND if DB_NEXT is set and the cursor is
already on the last record in the database.

« DB_NEXT_DUP

2/17/2015

DB C API Page 173


../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 12.1.6.1 The DBcursor Handle

If the next key/data pair of the database is a duplicate data record for the current key/
data pair, the cursor is moved to the next key/data pair of the database, and that pair is
returned.

The DBcursor->get () method will return DB_NOTFOUND if DB_NEXT_DUP is set and the
next key/data pair of the database is not a duplicate data record for the current key/data
pair.

If using a Heap database, this flag results in this method returning DB_NOTFOUND.
DB_NEXT_NODUP

If the cursor is not yet initialized, DB_NEXT_NODUP is identical to DB_FIRST. Otherwise, the
cursor is moved to the next non-duplicate key of the database, and that key/data pair is
returned.

If the database is a Queue or Recno database, DBcursor->get() using the DB_NEXT_NODUP
flag will ignore any keys that exist but were never explicitly created by the application, or
those that were created and later deleted.

The DBcursor->get () method will return DB_NOTFOUND if DB_NEXT_NODUP is set and no
non-duplicate key/data pairs exist after the cursor position in the database.

If using a Heap database, this flag is identical to the DB_NEXT flag.
DB_PREV

If the cursor is not yet initialized, DB_PREV is identical to DB_LAST. Otherwise, the cursor
is moved to the previous key/data pair of the database, and that pair is returned. In the
presence of duplicate key values, the value of the key may not change.

If the database is a Queue or Recno database, DBcursor->get() using the DB_PREV flag will
skip any keys that exist but were never explicitly created by the application, or those that
were created and later deleted.

The DBcursor->get () method will return DB_NOTFOUND if DB_PREV is set and the cursor is
already on the first record in the database.

DB_PREV_DUP

If the previous key/data pair of the database is a duplicate data record for the current key/
data pair, the cursor is moved to the previous key/data pair of the database, and that pair is
returned.

The DBcursor->get () method will return DB_NOTFOUND if DB_PREV_DUP is set and the
previous key/data pair of the database is not a duplicate data record for the current key/
data pair.

If using a Heap database, this flag results in this method returning DB_NOTFOUND.

« DB_PREV_NODUP

2/17/2015

DB C API Page 174


../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 12.1.6.1 The DBcursor Handle

If the cursor is not yet initialized, DB_PREV_NODUP is identical to DB_LAST. Otherwise, the
cursor is moved to the previous non-duplicate key of the database, and that key/data pair is
returned.

If the database is a Queue or Recno database, DBcursor->get() using the DB_PREV_NODUP
flag will ignore any keys that exist but were never explicitly created by the application, or
those that were created and later deleted.

The DBcursor->get() method will return DB_NOTFOUND if DB_PREV_NODUP is set and no
non-duplicate key/data pairs exist before the cursor position in the database.

If using a Heap database, this flag is identical to the DB_PREV flag.
DB_SET

Move the cursor to the specified key/data pair of the database, and return the datum
associated with the given key.

The DBcursor->get () method will return DB_NOTFOUND if DB_SET is set and no matching
keys are found. The DBcursor->get () method will return DB_KEYEMPTY if DB_SET is set
and the database is a Queue or Recno database, and the specified key exists, but was never
explicitly created by the application or was later deleted. In the presence of duplicate key
values, DBcursor->get () will return the first data item for the given key.

DB_SET_RANGE

Move the cursor to the specified key/data pair of the database. In the case of the Btree
access method, the key is returned as well as the data item and the returned key/data pair
is the smallest key greater than or equal to the specified key (as determined by the Btree
comparison function), permitting partial key matches and range searches.

In all other ways the behavior of this flag is the same as the DB_SET flag.

DB_SET_RECNO

Move the cursor to the specific numbered record of the database, and return the associated
key/data pair. The data field of the specified key must be a pointer to a memory location
from which a db_recno_t may be read, as described in DBT. This memory location will be

read to determine the record to be retrieved.

For DB_SET_RECNO to be specified, the underlying database must be of type Btree, and it
must have been created with the DB_RECNUM flag.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags
parameter:

e DB_IGNORE_LEASE

This flag is relevant only when using a replicated environment.

2/17/2015

DB C API Page 175


../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

Library Version 12.1.6.1 The DBcursor Handle

Return the data item irrespective of the state of master leases. The item will be returned
under all conditions: if master leases are not configured, if the request is made to a client,
if the request is made to a master with a valid lease, or if the request is made to a master
without a valid lease.

DB_READ_COMMITTED

Configure a transactional get operation to have degree 2 isolation (the read is not
repeatable).

DB_READ_UNCOMMITTED

Database items read during a transactional call will have degree 1 isolation, including
modified but not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag
was not specified when the underlying database was opened.

DB_MULTIPLE
Return multiple data items in the data parameter.

In the case of Btree or Hash databases, duplicate data items for the current key, starting

at the current cursor position, are entered into the buffer. Subsequent calls with both the
DB_NEXT_DUP and DB_MULTIPLE flags specified will return additional duplicate data items
associated with the current key or DB_NOTFOUND if there are no additional duplicate data
items to return. Subsequent calls with both the DB_NEXT and DB_MULTIPLE flags specified
will return additional duplicate data items associated with the current key or if there are no
additional duplicate data items will return the next key and its data items or DB_NOTFOUND
if there are no additional keys in the database.

In the case of Queue, Recno, or Heap databases, data items starting at the current cursor
position are entered into the buffer. The record number (or the RID, in the case of Heap)
of the first record will be returned in the key parameter. For Queue and Recno, the record
number of each subsequent returned record must be calculated from this value. For Heap
databases, the RID of subsequent returned records cannot be known. Subsequent calls with
the DB_MULTIPLE flag specified will return additional data items or DB_NOTFOUND if there
are no additional data items to return.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM ). The buffer must be at least as large as the page size of the underlying
database, aligned for unsigned integer access, and be a multiple of 1024 bytes in size.

If the buffer size is insufficient, then upon return from the call the size field of the data
parameter will have been set to an estimated buffer size, and the error DB_BUFFER_SMALL
is returned. (The size is an estimate as the exact size needed may not be known until all
entries are read. It is best to initially provide a relatively large buffer, but applications
should be prepared to resize the buffer as necessary and repeatedly call the method.)

The multiple data items can be iterated over using the DB_MULTIPLE_NEXT (page 191)
macro.

2/17/2015

DB C API Page 176


../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 12.1.6.1 The DBcursor Handle

The DB_MULTIPLE flag may only be used with the DB_CURRENT, DB_FIRST, DB_GET_BOTH,
DB_GET_BOTH_RANGE, DB_NEXT, DB_NEXT_DUP, DB_NEXT_NODUP, DB_SET, DB_SET_RANGE,
and DB_SET_RECNO options. The DB_MULTIPLE flag may not be used when accessing
databases made into secondary indices using the DB->associate() (page 6) method.

e DB_MULTIPLE_KEY
Return multiple key and data pairs in the data parameter.

Key and data pairs, starting at the current cursor position, are entered into the buffer.
Subsequent calls with both the DB_NEXT and DB_MULTIPLE_KEY flags specified will return
additional key and data pairs or DB_NOTFOUND if there are no additional key and data items
to return.

In the case of Btree, Hash or Heap databases, the multiple key and data pairs can be
iterated over using the DB_MULTIPLE_KEY_NEXT (page 192) macro.

In the case of Queue or Recno databases, the multiple record number and data pairs can be
iterated over using the DB_MULTIPLE_RECNO_NEXT (page 194) macro.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM ). The buffer must be at least as large as the page size of the underlying
database, aligned for unsigned integer access, and be a multiple of 1024 bytes in size.

If the buffer size is insufficient, then upon return from the call the size field of the data
parameter will have been set to an estimated buffer size, and the error DB_BUFFER_SMALL
is returned. (The size is an estimate as the exact size needed may not be known until all
entries are read. It is best to initially provide a relatively large buffer, but applications
should be prepared to resize the buffer as necessary and repeatedly call the method.)

The DB_MULTIPLE_KEY flag may only be used with the DB_CURRENT, DB_FIRST,
DB_GET_BOTH, DB_GET_BOTH_RANGE, DB_NEXT, DB_NEXT_DUP, DB_NEXT_NODUP, DB_SET,
DB_SET_RANGE, and DB_SET_RECNO options. The DB_MULTIPLE_KEY flag may not be used
when accessing databases made into secondary indices using the DB->associate() (page 6)
method.

o DB_RMW
Acquire write locks instead of read locks when doing the read, if locking is configured.
Setting this flag can eliminate deadlock during a read-modify-write cycle by acquiring the

write lock during the read part of the cycle so that another thread of control acquiring a
read lock for the same item, in its own read-modify-write cycle, will not result in deadlock.

Errors
The DBcursor->get () method may fail and return one of the following non-zero errors:

DB_BUFFER_SMALL

The requested item could not be returned due to undersized buffer.

2/17/2015 DB C API Page 177


../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 12.1.6.1 The DBcursor Handle

DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

DB_REP_LEASE_EXPIRED

The operation failed because the site's replication master lease has expired.
DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.
DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EINVAL

If the DB_CURRENT, DB_NEXT_DUP or DB_PREV_DUP flags were specified and the cursor has
not been initialized; the DBcursor->pget () method was called with a cursor that does not
refer to a secondary index; or if an invalid flag value or parameter was specified.

Class
DBcursor
See Also

Database Cursors and Related Methods (page 161)

2/17/2015 DB C API Page 178



Library Version 12.1.6.1 The DBcursor Handle

DBcursor->get_priority()
#include <db.h>

int
DBcursor->get_priority(DBC *DbCursor, DB_CACHE_PRIORITY *priorityp);

The DBcursor->get_priority() method returns the cache priority for pages referenced by
the DBcursor handle.

The DBcursor->get_priority() method may be called at any time during the life of the
application.

The DBcursor->get_priority() method returns a non-zero error value on failure and 0 on
success.

Parameters

priorityp

The DBcursor->get_priority() method returns a reference to the cache priority for pages
referenced by the DBcursor handle in priorityp.

Class
DBcursor
See Also

Database Cursors and Related Methods (page 161)

2/17/2015 DB C API Page 179



Library Version 12.1.6.1 The DBcursor Handle

DBcursor->put()
#include <db.h>

int
DBcursor->put(DBC *DBcursor, DBT *key, DBT *data, u_int32 t flags);

The DBcursor->put() method stores key/data pairs into the database.

Unless otherwise specified, the DBcursor->put() method returns a non-zero error value on
failure and 0 on success.

If DBcursor->put() fails for any reason, the state of the cursor will be unchanged. If
DBcursor->put() succeeds and an item is inserted into the database, the cursor is always
positioned to refer to the newly inserted item.

Parameters
key
The key DBT operated on.

If creating a new record in a Heap database, the key DBT must be empty. The put method will
return the new record's Record ID (RID) in the key DBT.

data

The data DBT operated on.

flags

The flags parameter must be set to one of the following values:

e DB_AFTER

In the case of the Btree and Hash access methods, insert the data element as a duplicate
element of the key to which the cursor refers. The new element appears immediately after
the current cursor position. It is an error to specify DB_AFTER if the underlying Btree or
Hash database is not configured for unsorted duplicate data items. The key parameter is
ignored.

In the case of the Recno access method, it is an error to specify DB_AFTER if the underlying
Recno database was not created with the DB_RENUMBER flag. If the DB_RENUMBER flag
was specified, a new key is created, all records after the inserted item are automatically
renumbered, and the key of the new record is returned in the structure to which the key
parameter refers. The initial value of the key parameter is ignored. See DB->open() (page
70) for more information.

The DB_AFTER flag may not be specified to the Queue access method.

The DBcursor->put() method will return DB_NOTFOUND if the current cursor record has
already been deleted and the underlying access method is Hash.

e DB_BEFORE

2/17/2015 DB C API Page 180


../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 12.1.6.1 The DBcursor Handle

In the case of the Btree and Hash access methods, insert the data element as a duplicate
element of the key to which the cursor refers. The new element appears immediately
before the current cursor position. It is an error to specify DB_AFTER if the underlying Btree
or Hash database is not configured for unsorted duplicate data items. The key parameter is
ignored.

In the case of the Recno access method, it is an error to specify DB_BEFORE if the
underlying Recno database was not created with the DB_RENUMBER flag. If the
DB_RENUMBER flag was specified, a new key is created, the current record and all records
after it are automatically renumbered, and the key of the new record is returned in the
structure to which the key parameter refers. The initial value of the key parameter is
ignored. See DB->open() (page 70) for more information.

The DB_BEFORE flag may not be specified to the Queue access method.

The DBcursor->put () method will return DB_NOTFOUND if the current cursor record has
already been deleted and the underlying access method is Hash.

DB_CURRENT

Overwrite the data of the key/data pair to which the cursor refers with the specified data
item. The key parameter is ignored.

The DBcursor->put () method will return DB_NOTFOUND if the current cursor record has
already been deleted.

DB_KEYFIRST
Insert the specified key/data pair into the database.

If the underlying database supports duplicate data items, and if the key already exists in
the database and a duplicate sort function has been specified, the inserted data item is
added in its sorted location. If the key already exists in the database and no duplicate sort
function has been specified, the inserted data item is added as the first of the data items
for that key.

DB_KEYLAST

Insert the specified key/data pair into the database.

If the underlying database supports duplicate data items, and if the key already exists in
the database and a duplicate sort function has been specified, the inserted data item is
added in its sorted location. If the key already exists in the database, and no duplicate sort
function has been specified, the inserted data item is added as the last of the data items
for that key.

DB_NODUPDATA

In the case of the Btree and Hash access methods, insert the specified key/data pair into
the database, unless a key/data pair comparing equally to it already exists in the database.

2/17/2015

DB C API Page 181


../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

Library Version 12.1.6.1 The DBcursor Handle

If a matching key/data pair already exists in the database, DB_KEYEXIST (page 182) is
returned. The DB_NODUPDATA flag may only be specified if the underlying database has
been configured to support sorted duplicate data items.

The DB_NODUPDATA flag may not be specified to the Queue or Recno access methods.

Errors

The DBcursor->put() method may fail and return one of the following non-zero errors:
DB_KEYEXIST

An attempt was made to insert a duplicate key into a database not configured for duplicate
data.

DB_FOREIGN_CONFLICT
A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for
that record does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 11) was declared for a foreign key database, and then
subsequently a record was deleted from the foreign key database without first removing
it from the constrained secondary database.

DB_HEAP_FULL

An attempt was made to add or update a record in a Heap database. However, the size of the
database was constrained using the DB->set_heapsize() (page 119) method, and that limit has
been reached.

DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions

to be rolled back. This invalidates all the database and cursor handles opened in the
replication environment. Once this occurs, an attempt to use such a handle will return
DB_REP_HANDLE_DEAD. The application will need to discard the handle and open a new one in
order to continue processing.

2/17/2015

DB C API Page 182



Library Version 12.1.6.1 The DBcursor Handle

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.
EACCES

An attempt was made to modify a read-only database.

EINVAL

If the DB_AFTER, DB_BEFORE or DB_CURRENT flags were specified and the cursor has not been
initialized; the DB_AFTER or DB_BEFORE flags were specified and a duplicate sort function

has been specified; the DB_CURRENT flag was specified, a duplicate sort function has been
specified, and the data item of the referenced key/data pair does not compare equally to the
data parameter; the DB_AFTER or DB_BEFORE flags were specified, and the underlying access
method is Queue; an attempt was made to add a record to a fixed-length database that was
too large to fit; an attempt was made to add a record to a secondary index; or if an invalid
flag value or parameter was specified.

EPERM

Write attempted on read-only cursor when the DB_INIT_CDB flag was specified to DB_ENV-
>open() (page 256).

Class

DBcursor

See Also

Database Cursors and Related Methods (page 161)

2/17/2015

DB C API Page 183



Library Version 12.1.6.1 The DBcursor Handle

DBcursor->set_priority()
#include <db.h>

int
DBcursor->set_priority(DBC *DbCursor, DB_CACHE_PRIORITY priority);

Set the cache priority for pages referenced by the DBcursor handle.

The priority of a page biases the replacement algorithm to be more or less likely to discard a
page when space is needed in the buffer pool. The bias is temporary, and pages will eventually
be discarded if they are not referenced again. The DBcursor->set_priority() method is
only advisory, and does not guarantee pages will be treated in a specific way.

The DBcursor->set_priority() method may be called at any time during the life of the
application.

The DBcursor->set_priority() method returns a non-zero error value on failure and 0 on
success.

Parameters
priority
The priority parameter must be set to one of the following values:
e DB_PRIORITY_VERY_LOW
The lowest priority: pages are the most likely to be discarded.
e DB_PRIORITY_LOW
The next lowest priority.
e DB_PRIORITY_DEFAULT
The default priority.
o DB_PRIORITY_HIGH
The next highest priority.
« DB_PRIORITY_VERY_HIGH
The highest priority: pages are the least likely to be discarded.
Class
DBcursor

See Also

Database Cursors and Related Methods (page 161)

2/17/2015 DB C API Page 184



Chapter 4. The DBT Handle

#include <db.h>

typedef struct {
void *app_data;
void *data;
u_int32_t size;
u_int32_t ulen;
u_int32_t dlen;
u_int32_t doff;
u_int32_t flags;

} DBT;

Storage and retrieval for the DB access methods are based on key/data pairs. Both key and
data items are represented by the DBT data structure. (The name DBT is a mnemonic for
data base thang, and was used because no one could think of a reasonable name that wasn't
already in use somewhere else.) Key and data byte strings may refer to strings of zero length
up to strings of essentially unlimited length. See Database limits for more information.

All fields of the DBT structure that are not explicitly set should be initialized to nul bytes
before the first time the structure is used. Do this by declaring the structure external or
static, or by calling the C library routine memset(3).

By default, the flags structure element is expected to be set to 0. In this default case,

when the application is providing Berkeley DB a key or data item to store into the database,
Berkeley DB expects the data structure element to point to a byte string of size bytes. When
returning a key/data item to the application, Berkeley DB will store into the data structure
element a pointer to a byte string of size bytes, and the memory to which the pointer refers
will be allocated and managed by Berkeley DB. Note that using the default flags for returned
DBTs is only compatible with single threaded usage of Berkeley DB.

The elements of the DBT structure are defined as follows:
« void *app_data;

Optional field that can be used to pass information through Berkeley DB API calls into user-
defined callback functions. For example, this field may be accessed to pass user-defined
content when implementing the callback used by DB->set_dup_compare() (page 98).

« void *data;
A pointer to a byte string.
e u_int32_t size;
The length of data, in bytes.

e u_int32_t ulen;

2/17/2015

DB C API Page 185


../../programmer_reference/am_misc_dbsizes.html

Library Version 12.1.6.1 The DBT Handle

The size of the user's buffer (to which data refers), in bytes. This location is not written by
the Berkeley DB functions.

Set the byte size of the user-specified buffer.

Note that applications can determine the length of a record by setting the ulen field to
0 and checking the return value in the size field. See the DB_DBT_USERMEM flag for more
information.

u_int32_t dlen;

The length of the partial record being read or written by the application, in bytes. See the
DB_DBT_PARTIAL flag for more information.

u_int32_t doff;

The offset of the partial record being read or written by the application, in bytes. See the
DB_DBT_PARTIAL flag for more information.

u_int32_t flags;

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more
of the following values:

- DB_DBT_BLOB

Set this flag on a DBT used for the data portion of a record to indicate that the DBT stores
BLOB data. If this flag is set, and if the database otherwise supports BLOBs, then the data
contained by this DBT will be stored as a BLOB, regardless of whether it exceeds the BLOB
threshold in size.

« DB_DBT_MALLOC

When this flag is set, Berkeley DB will allocate memory for the returned key or data item
(using malloc(3), or the user-specified malloc function), and return a pointer to it in the
data field of the key or data DBT structure. Because any allocated memory becomes the

responsibility of the calling application, the caller must determine whether memory was
allocated using the returned value of the data field.

It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLOC, and
DB_DBT_USERMEM.

« DB_DBT_REALLOC

When this flag is set Berkeley DB will allocate memory for the returned key or data item
(using realloc(3), or the user-specified realloc function), and return a pointer to it in the
data field of the key or data DBT structure. Because any allocated memory becomes the
responsibility of the calling application, the caller must determine whether memory was
allocated using the returned value of the data field.

2/17/2015

DB C API Page 186



Library Version 12.1.6.1

The DBT Handle

The difference between DB_DBT_MALLOC and DB_DBT_REALLOC is that the latter will
call realloc(3) instead of malloc(3), so the allocated memory will be grown as necessary
instead of the application doing repeated free/malloc calls.

It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLOC, and
DB_DBT_USERMEM.

DB_DBT_USERMEM

The data field of the key or data structure must refer to memory that is at least

ulen bytes in length. If the length of the requested item is less than or equal to that
number of bytes, the item is copied into the memory to which the data field refers.
Otherwise, the size field is set to the length needed for the requested item, and the error
DB_BUFFER_SMALL is returned.

It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLOC, and
DB_DBT_USERMEM.

DB_DBT_PARTIAL

Do partial retrieval or storage of an item. If the calling application is doing a get, the
dlen bytes starting doff bytes from the beginning of the retrieved data record are
returned as if they comprised the entire record. If any or all of the specified bytes do not
exist in the record, the get is successful, and any existing bytes are returned.

For example, if the data portion of a retrieved record was 100 bytes, and a partial
retrieval was done using a DBT having a dlen field of 20 and a doff field of 85, the get call
would succeed, the data field would refer to the last 15 bytes of the record, and the size
field would be set to 15.

If the calling application is doing a put, the dlen bytes starting doff bytes from the
beginning of the specified key's data record are replaced by the data specified by the
data and size structure elements. If dlen is smaller than size the record will grow; if dlen
is larger than size the record will shrink. If the specified bytes do not exist, the record
will be extended using nul bytes as necessary, and the put call will succeed.

It is an error to attempt a partial put using the DB->put() (page 75) method in a database
that supports duplicate records. Partial puts in databases supporting duplicate records
must be done using a DBcursor->put() (page 180) method.

It is an error to attempt a partial put with differing dlen and size values in Queue or
Recno databases with fixed-length records.

For example, if the data portion of a retrieved record was 100 bytes, and a partial put
was done using a DBT having a dlen field of 20, a doff field of 85, and a size field of 30,
the resulting record would be 115 bytes in length, where the last 30 bytes would be those
specified by the put call.

2/17/2015

DB C API Page 187



Library Version 12.1.6.1

The DBT Handle

This flag is ignored when used with the pkey parameter on DB->pget() or DBcursor-
>pget().

DB_DBT_APPMALLOC

After an application-supplied callback routine passed to either DB->associate() (page

6) or DB->set_append_recno() (page 85) is executed, the data field of a DBT may refer
to memory allocated with malloc(3) or realloc(3). In that case, the callback sets the
DB_DBT_APPMALLOC flag in the DBT so that Berkeley DB will call free(3) to deallocate the
memory when it is no longer required.

DB_DBT_MULTIPLE

Set in a secondary key creation callback routine passed to DB->associate() (page 6) to
indicate that multiple secondary keys should be associated with the given primary key/
data pair. If set, the size field indicates the number of secondary keys and the data field
refers to an array of that number of DBT structures.

The DB_DBT_APPMALLOC flag may be set on any of the DBT structures to indicate that
their data field needs to be freed.

DB_DBT_READONLY

When this flag is set Berkeley DB will not write into the DBT. This may be set on key
values in cases where the key is a static string that cannot be written and Berkeley DB
might try to update it because the application has set a user defined comparison function.

2/17/2015

DB C API Page 188



Library Version 12.1.6.1

The DBT Handle

DBT and Bulk Operations

DBT and Bulk Operations

Description

DB->sort_multiple()

Sort a set of DBTs

DB_MULTIPLE_INIT

Initialize bulk get retrieval

DB_MULTIPLE_NEXT

Next bulk get retrieval

DB_MULTIPLE_KEY_NEXT

Next bulk get retrieval

DB_MULTIPLE_RECNO_NEXT

Next bulk get retrieval

DB_MULTIPLE_WRITE_INIT

Initialize a bulk buffer to hold key/data pairs

DB_MULTIPLE_WRITE_NEXT

Append a data item to a bulk buffer

DB_MULTIPLE_RESERVE_NEXT

Reserve space for a data item in a bulk buffer

DB_MULTIPLE_KEY_WRITE_NEXT

Append a key / data pair to a bulk buffer

DB_MULTIPLE_KEY_RESERVE_NEXT

Reserve space for a key / data pair in a bulk
buffer

DB_MULTIPLE_RECNO_WRITE_INIT

Initialize a bulk buffer to hold recno/data
pairs

DB_MULTIPLE_RECNO_WRITE_NEXT

Append a record number / data pair to a bulk
buffer

DB_MULTIPLE_RECNO_RESERVE_NEXT

Reserve space for a record number / data pair
in a bulk buffer

2/17/2015

DB C API

Page 189



Library Version 12.1.6.1 The DBT Handle

DB_MULTIPLE_INIT
#tinclude <db.h>
DB_MULTIPLE_INIT(void *pointer, DBT *data);

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the DB->get() (page
31) or DBcursor->get() (page 171) methods, the data DBT returned by those interfaces will
refer to a buffer that is filled with data. Access to that data is through the DB_MULTIPLE_*

macros.

This macro initializes a variable used for bulk retrieval.

Parameters
pointer

The pointer parameter is a variable to be initialized.

data

The data parameter is a DBT structure returned from a successful call to DB->get() (page 31)
or DBcursor->get() (page 171) for which one of the DB_MULTIPLE or DB_MULTIPLE_KEY flags

were specified.
Class
DBT

See Also

DBT and Bulk Operations (page 189)

2/17/2015 DB C API Page 190



Library Version 12.1.6.1 The DBT Handle

DB_MULTIPLE_NEXT

#tinclude <db.h>

DB_MULTIPLE_NEXT(void *pointer, DBT *data, void *retdata,
size_t retdlen);

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the DB->get() (page
31) or DBcursor->get() (page 171) methods, the data DBT returned by those interfaces will
refer to a buffer that is filled with data. Access to that data is through the DB_MULTIPLE_*
macros.

Returns the next DBT in the bulk retrieval set.

Parameters
pointer

The pointer parameter is a variable that must have been initialized by a call to
DB_MULTIPLE_INIT (page 190).

This parameter is set to NULL if there are no more key/data pairs in the returned set.
data

The data parameter is a DBT structure returned from a successful call to DB->get() (page 31)
or DBcursor->get() (page 171) for which he DB_MULTIPLE flag was specified.

The data parameter must have been initialized by a call to DB_MULTIPLE_INIT (page 190).
retdata

The retdata is set to the next data element in the returned set.

retdlen

The retdlen parameter is set to the length, in bytes, of that data element. When used with
the Queue and Recno access methods, retdata parameter will be set to NULL for deleted
records.

Class
DBT

See Also

DBT and Bulk Operations (page 189)

2/17/2015 DB C API Page 191



Library Version 12.1.6.1 The DBT Handle

DB_MULTIPLE_KEY_NEXT

#tinclude <db.h>

DB_MULTIPLE_KEY_NEXT(void *pointer, DBT *data,
void *retkey, size_t retklen, void *retdata, size_t retdlen);

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the DB->get() (page
31) or DBcursor->get() (page 171) methods, the data DBT returned by those interfaces will
refer to a buffer that is filled with data. Access to that data is through the DB_MULTIPLE_*
macros.

Returns the next DBT in the bulk retrieval set. Use this macro with DBT structures obtained
from a database that uses the Btree or Hash access methods.

Parameters

pointer

The pointer parameter is a variable that must have been initialized by a call to
DB_MULTIPLE_INIT (page 190).

This parameter is set to NULL if there are no more key/data pairs in the returned set.
data

The data parameter is a DBT structure returned from a successful call to DBcursor-

>get() (page 171) with the Btree or Hash access methods for which the DB_MULTIPLE_KEY flag
was specified.

The data parameter must have been initialized by a call to DB_MULTIPLE_INIT (page 190).
retkey

The retkey parameter is set to the next key element in the returned set.

retklen

The retklen parameter is set to the length, in bytes, of the next key element.

retdata

The retdata parameter is set to the next data element in the returned set.

retdlen

The retdlen parameter is set to the length, in bytes, of the next data element.

Class

DBT

2/17/2015

DB C API Page 192



Library Version 12.1.6.1 The DBT Handle

See Also

DBT and Bulk Operations (page 189)

2/17/2015 DB C API Page 193



Library Version 12.1.6.1 The DBT Handle

DB_MULTIPLE_RECNO_NEXT

#include <db.h>

DB_MULTIPLE_RECNO_NEXT(void *pointer, DBT *data,
db_recno_t recno, void * retdata, size t retdlen);

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the DB->get() (page
31) or DBcursor->get() (page 171) methods, the data DBT returned by those interfaces will
refer to a buffer that is filled with data. Access to that data is through the DB_MULTIPLE_*
macros.

Returns the next DBT in the bulk retrieval set. Use this macro with DBT structures obtained
from a database that uses the Queue or Recno access methods.

Parameters

pointer

The pointer parameter is a variable that must have been initialized by a call to
DB_MULTIPLE_INIT (page 190).

This parameter is set to NULL if there are no more key/data pairs in the returned set.
data

The data parameter is a DBT structure returned from a successful call to DBcursor-
>get() (page 171) with the Queue or Recno access methods for which the DB_MULTIPLE_KEY
flag was specified.

The data parameter must have been initialized by a call to DB_MULTIPLE_INIT (page 190).
recno

The recno parameter is set to the record number of the next record in the returned set.
retdata

The retdata parameter is set to the next data element in the returned set. Deleted records
are not included in the results.

retdlen

The retdlen parameter is set to the length, in bytes, of the next data element.
Class

DBT
See Also

DBT and Bulk Operations (page 189)

2/17/2015 DB C API Page 194



Library Version 12.1.6.1 The DBT Handle

DB_MULTIPLE_WRITE_INIT
#tinclude <db.h>
DB_MULTIPLE_WRITE_INIT(void *pointer, DBT *data);

Initialize a DBT containing a bulk buffer for use with the DB_MULTIPLE or DB_MULTIPLE_KEY
flags to the DB->put() (page 75) or DB->del() (page 23) methods.

This macro initializes an opaque pointer variable used for adding records to a bulk buffer.
Use this macro for buffers that will contain either a data item per record (for use with
DB_MULTIPLE), or key/data pairs, where the key is not a record number. For record number
keys, use DB_MULTIPLE_RECNO_WRITE_INIT.

Parameters
pointer
The pointer parameter is an opaque pointer variable to be initialized.
data

The data parameter is a DBT structure that has been initialized by the application with a
buffer to hold multiple records. The ulen field must be set to the size of the buffer allocated
by the application, and must be a multiple of 4.

Class
DBT

See Also

DBT and Bulk Operations (page 189)

2/17/2015 DB C API Page 195



Library Version 12.1.6.1 The DBT Handle

DB_MULTIPLE_WRITE_NEXT

#tinclude <db.h>

DB_MULTIPLE_WRITE_NEXT(void *pointer, DBT *dbt, void *data,
size_t dlen);

Appends a data item to the bulk buffer.

Parameters

pointer

The pointer parameter is a variable that must have been initialized by a call to
DB_MULTIPLE_WRITE_INIT (page 195).

This parameter is set to NULL if the data item does not fit in the buffer.
dbt
The dbt parameter is a DBT structure initialized with DB_MULTIPLE_WRITE_INIT (page 195).
data
A pointer to the bytes to be copied into the bulk buffer.
dlen
The number of bytes to be copied.
Class

DBT

See Also

DBT and Bulk Operations (page 189)

2/17/2015 DB C API Page 196



Library Version 12.1.6.1 The DBT Handle

DB_MULTIPLE_RESERVE_NEXT

#tinclude <db.h>

DB_MULTIPLE_RESERVE_NEXT(void *pointer, DBT *dbt,
void *ddest, size_t dlen);

Reserves space for a data item in a bulk buffer.
Parameters
dbt
The dbt parameter is a DBT structure initialized with DB_MULTIPLE_WRITE_INIT (page 195).

pointer

The pointer parameter is a variable that must have been initialized by a call to
DB_MULTIPLE_WRITE_INIT (page 195).

ddest

The ddest parameter is set to the location reserved in the bulk buffer for the data item.
This parameter is set to NULL if the data item does not fit in the buffer.
dlen
The number of bytes to be reserved for the data item.
Class
DBT
See Also

DBT and Bulk Operations (page 189)

2/17/2015 DB C API Page 197



Library Version 12.1.6.1 The DBT Handle

DB_MULTIPLE_KEY_WRITE_NEXT

#tinclude <db.h>

DB_MULTIPLE_KEY_WRITE_NEXT(void *pointer, DBT *dbt,
void *key, size_t klen, void *data, size_t dlen);

Appends a key / data pair to the bulk buffer.
Parameters

pointer

The pointer parameter is a variable that must have been initialized by a call to
DB_MULTIPLE_WRITE_INIT (page 195).

This parameter is set to NULL if the data item does not fit in the buffer.
dbt
The dbt parameter is a DBT structure initialized with DB_MULTIPLE_WRITE_INIT (page 195).
key
A pointer to the bytes for the key to be copied into the bulk buffer.
klen
The number of bytes to be copied for the key.
data
A pointer to the bytes for the data item to be copied into the bulk buffer.
dlen
The number of bytes to be copied for the data item.
Class

DBT

See Also

DBT and Bulk Operations (page 189)

2/17/2015 DB C API Page 198



Library Version 12.1.6.1 The DBT Handle

DB_MULTIPLE_KEY_RESERVE_NEXT

#tinclude <db.h>

DB_MULTIPLE_KEY_RESERVE_NEXT(void *pointer, DBT *dbt,
void *kdest, size_t klen, void *ddest, size_t dlen);

Reserves space for a key / data pair in a bulk buffer.

Parameters

pointer

The pointer parameter is a variable that must have been initialized by a call to
DB_MULTIPLE_WRITE_INIT (page 195).

kdest
The kdest parameter is set to the location reserved in the bulk buffer for the key.
This parameter is set to NULL if the data item does not fit in the buffer.
klen
The number of bytes to be reserved for the key.
ddest
The ddest parameter is set to the location reserved in the bulk buffer for the data item.
This parameter is set to NULL if the data item does not fit in the buffer.
dlen
The number of bytes to be reserved for the data item.
Class

DBT

See Also

DBT and Bulk Operations (page 189)

2/17/2015 DB C API Page 199



Library Version 12.1.6.1 The DBT Handle

DB_MULTIPLE_RECNO_WRITE_INIT

#tinclude <db.h>

DB_MULTIPLE_RECNO_WRITE_INIT(void *pointer, DBT *data);

Initialize a DBT containing a bulk buffer for use with the DB_MULTIPLE or DB_MULTIPLE_KEY
flags to the DB->put() (page 75) or DB->del() (page 23) methods, if the buffer will contain
record number keys.

This macro initializes an opaque pointer variable used for adding records to a bulk buffer.
Use this macro for buffers that will contain either a list of record numbers (for use with
DB_MULTIPLE), or key/data pairs, where the key is a record number.

Parameters
pointer
The pointer parameter is an opaque pointer variable to be initialized.
data

The data parameter is a DBT structure that has been initialized by the application with a
buffer to hold multiple records. The ulen field must be set to the size of the buffer allocated
by the application, which must be a multiple of 4.

Class
DBT

See Also

DBT and Bulk Operations (page 189)

2/17/2015 DB C API Page 200



Library Version 12.1.6.1 The DBT Handle

DB_MULTIPLE_RECNO_WRITE_NEXT

#tinclude <db.h>

DB_MULTIPLE_RECNO_WRITE_NEXT(void *pointer, DBT *dbt,
db_recno_t recno, void *data, size_t dlen);

Appends a record number / data pair to the bulk buffer.

Parameters

pointer

The pointer parameter is a variable that must have been initialized by a call to
DB_MULTIPLE_RECNO_WRITE_INIT (page 200).

This parameter is set to NULL if the data item does not fit in the buffer.

dbt

The dbt parameter is a DBT structure initialized with DB_MULTIPLE_WRITE_INIT (page 195).
recno

The record number to be copied into the bulk buffer.

data

A pointer to the bytes to be copied into the bulk buffer.

dlen

The number of bytes to be copied.
Class
DBT

See Also

DBT and Bulk Operations (page 189)

2/17/2015 DB C API Page 201



Library Version 12.1.6.1 The DBT Handle

DB_MULTIPLE_RECNO_RESERVE_NEXT

#tinclude <db.h>

DB_MULTIPLE_RECNO_RESERVE_NEXT(void *pointer, DBT *dbt, db_recno_t recno,
void *ddest, size_t dlen);

Reserves space for a record number / data pair in a bulk buffer.

Parameters

pointer

The pointer parameter is a variable that must have been initialized by a call to
DB_MULTIPLE_RECNO_WRITE_INIT (page 200).

dbt

The dbt parameter is a DBT structure initialized with DB_MULTIPLE_RECNO_WRITE_INIT (page
200).

recno
The record number to be copied into the bulk buffer.
This parameter is set to 0 if the data item does not fit in the buffer.
ddest
The ddest parameter is set to the location reserved in the bulk buffer for the data item.
This parameter is set to NULL if the data item does not fit in the buffer.
dlen
The number of bytes to be reserved.
Class

DBT

See Also

DBT and Bulk Operations (page 189)

2/17/2015 DB C API Page 202



Chapter 5. The DB_ENV Handle

The DB_ENV object is the handle for a Berkeley DB environment — a collection including
support for some or all of caching, locking, logging and transaction subsystems, as well as
databases and log files. Methods of the DB_ENV handle are used to configure the environment
as well as to operate on subsystems and databases in the environment.

DB_ENV handles are created using the db_env_create (page 213) method, and are opened
using the DB_ENV->open() (page 256) method.

When you are done using your environment, close it using the DB_ENV->close() (page 211)
method. Before closing your environment, make sure all open database handles are closed
first. See the DB->close() (page 13) method for more information.

2/17/2015 DB C API Page 203



Library Version 12.1.6.1

The DB_ENV Handle

Database Environments and Related Methods

Database Environment Operations

Description

DB_ENV->backup()

Hot back up an entire environment

DB_ENV->close()

Close an environment

db_env_create

Create an environment handle

DB_ENV->dbbackup()

Hot back up a single environment file

DB_ENV->dbremove()

Remove a database

DB_ENV->dbrename()

Rename a database

DB_ENV->err()

Error message

DB_ENV->failchk()

Check for thread failure

DB_ENV->fileid_reset()

Reset database file IDs

db_full_version

Return full version information

DB->get_env()

Return the DB's underlying DB_ENV handle

DB_ENV->get_home()

Return environment's home directory

DB_ENV->get_open_flags()

Return flags with which the environment was
opened

DB_ENV->log_verify()

Verify log files of an environment.

DB_ENV->lsn_reset()

Reset database file LSNs

DB_ENV->open()

Open an environment

DB_ENV->remove()

Remove an environment

DB_ENV->stat_print()

Environment statistics

db_strerror

Error strings

db_version

Return version information

Environment Configuration

DB_ENV->add_data_dir()

Add an environment data directory

DB_ENV->set_alloc()

Set local space allocation functions

DB_ENV->set_app_dispatch()

Configure application recovery callback

DB_ENV->set_backup_callbacks(), DB_ENV-
>get_backup_callbacks()

Set/get callbacks used for environment hot
backups

DB_ENV->set_backup_config(), DB_ENV-
>get_backup_config()

Set/get environment hot backup configuration
options

DB_ENV->set_data_dir(), DB_ENV-
>get_data_dirs()

Set/get the environment data directory

DB_ENV->set_data_len(), DB_ENV-
>get_data_len()

Set/get the command line utility byte limit

DB_ENV->set_create_dir(), DB_ENV-
>get_create_dir()

Add an environment data directory

2/17/2015

DB C API

Page 204



Library Version 12.1.6.1

The DB_ENV Handle

Database Environment Operations

Description

DB_ENV->set_encrypt(), DB_ENV-
>get_encrypt_flags()

Set/get the environment cryptographic key

DB_ENV->set_event_notify()

Set event notification callback

DB_ENV->set_errcall()

Set error message callbacks

DB_ENV->set_errfile(), DB_ENV->get_errfile()

Set/get error message FILE

DB_ENV->set_errpfx(), DB_ENV->get_errpfx()

Set/get error message prefix

DB_ENV->set_feedback()

Set feedback callback

DB_ENV->set_flags(), DB_ENV->get_flags()

Environment configuration

DB_ENV->set_intermediate_dir_mode(),
DB_ENV->get_intermediate_dir_mode()

Set/get intermediate directory creation mode

DB_ENV->set_isalive()

Set thread is-alive callback

DB_ENV->set_memory_init(), DB_ENV-
>get_memory_init()

Set/get initial memory allocation

DB_ENV->set_memory_max(), DB_ENV-
>get_memory_max()

Set/get maximum memory allocation

DB_ENV->set_metadata_dir(), DB_ENV-
>get_metadata_dir()

Set/get the directory containing environment
metadata

DB_ENV->set_msgcall()

Set informational message callback

DB_ENV->set_msgfile(), DB_ENV-
>get_msgfile()

Set/get informational message FILE

DB_ENV->set_shm_key(), DB_ENV-
>get_shm_key()

Set/get system memory shared segment ID

DB_ENV->set_thread_count(), DB_ENV-
>get_thread_count()

Set/get approximate thread count

DB_ENV->set_thread_id()

Set thread of control ID function

DB_ENV->set_thread_id_string()

Set thread of control ID format function

DB_ENV->set_timeout(), DB_ENV-
>get_timeout()

Set/get lock and transaction timeout

DB_ENV->set_tmp_dir(), DB_ENV-
>get_tmp_dir()

Set/get the environment temporary file
directory

DB_ENV->set_verbose(), DB_ENV-
>get_verbose()

Set/get verbose messages

DB_ENV->set_cachesize(), DB_ENV-
>get_cachesize()

Set/get the environment cache size

DB C API

Page 205



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->add_data_dir()

#tinclude <db.h>

int

DB_ENV->add _data_dir(DB_ENV *dbenv, const char *dir);
Add the path of a directory to be used as the location of the access method database files.
Paths specified to the DB->open() (page 70) function will be searched relative to this path.

Paths set using this method are additive, and specifying more than one will result in each
specified directory being searched for database files.

If no database directories are specified, database files must be named either by absolute
paths or relative to the environment home directory. See Berkeley DB File Naming for more
information.

The database environment's data directories may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"add_data_dir", one or more whitespace characters, and the directory name. Note that if you
use this method for your application, and you also want to use the db_recover (page 697)

or db_archive (page 674) utilities, then you should create a DB_CONFIG file and set the
"add_data_dir" parameter in it.

The DB_ENV->add_data_dir() method configures operations performed using the specified
DB_ENV handle, not all operations performed on the underlying database environment.

The DB_ENV->add_data_dir() method may not be called after the DB_ENV->open() (page
256) method is called. If the database environment already exists when DB_ENV-

>open() (page 256) is called, the information specified to DB_ENV->add_data_dir() must be
consistent with the existing environment or corruption can occur.

The DB_ENV->add_data_dir() method returns a non-zero error value on failure and 0 on
success.

Parameters

dir

The dir parameter is a directory to be used as a location for database files. This directory
must currently exist at environment open time.

When using a Unicode build on Windows (the default), this argument will be interpreted as a
UTF-8 string, which is equivalent to ASCII for Latin characters.

Errors

The DB_ENV->add_data_dir() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called after DB_ENV->open() (page 256) was called; or if an invalid flag
value or parameter was specified.

2/17/2015

DB C API Page 206


../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 207



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->backup()

#include <db.h>

int
DB_ENV->backup(DB_ENV *dbenv, const char *target, u_int32 t flags);

The DB_ENV->backup() method performs a hot backup of the open environment. All files
used by the environment are backed up, so long as the normal rules for file placement are
followed. For information on how files are normally placed relative to the environment

directory, see Berkeley DB File Naming in the Berkeley DB Programmer’s Reference Guide.

By default, data directories and the log directory specified relative to the home directory will
be recreated relative to the target directory. If absolute path names are used, then specify
DB_BACKUP_SINGLE_DIR to the flags parameter.

This method provides the same functionality as the db_hotbackup (page 684) utility.

However, this method does not perform the housekeeping actions performed by the
db_hotbackup utility. In particular, you may want to run a checkpoint before calling this
method. To run a checkpoint, use the DB_ENV->txn_checkpoint() (page 631) method. For
more information on checkpoints, see Checkpoints in the Berkeley DB Programmer’s Reference
Guide.

To back up a single database file contained within the environment, use the DB_ENV-
>dbbackup() (page 214) method.

This method's default behavior can be changed by setting backup callbacks. See DB_ENV-
>set_backup_callbacks() (page 268) for more information. Additional tuning parameters can
also be set using the DB_ENV->set_backup_config() (page 271) method.

The DB_ENV->backup() method may only be called after the environment handle has been
opened.

The DB_ENV->backup() method returns a non-zero error value on failure and 0 on success.

Parameters

target

Identifies the directory in which the back up will be placed. Any subdirectories required to
contain the backup must be placed relative to this directory. Note that if the backup callbacks
are set, then the value specified to this parameter is passed on to the open_func() callback.
If this parameter is NULL, then the target must be specified to the open_func() callback.

This directory, and any required subdirectories, will be created for you if you specify the
DB_CREATE flag on the call to this method. Otherwise, if the target does not exist, this
method exits with an ENOENT error return.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the values:

2/17/2015

DB C API Page 208


../../programmer_reference/env_naming.html
../../programmer_reference/transapp_checkpoint.html

Library Version 12.1.6.1 The DB_ENV Handle

DB_BACKUP_CLEAN
Before performing the backup, first remove all files from the target backup directory tree.
o DB_BACKUP_FILES

Back up all ordinary files that might exist in the environment, and the environment'’s
subdirectories.

« DB_BACKUP_NO_LOGS
Back up only the *.db files. Do not backup the log files.
 DB_BACKUP_SINGLE_DIR

Regardless of the directory structure used by the source environment, place all back up files
in the single directory identified by the target parameter. Use this option if absolute path
names to your environment directory and the files within that directory are required by
your application.

* DB_BACKUP_UPDATE

Perform an incremental back up, instead of a full back up. When this option is specified,
only log files are copied to the target directory.

e DB_CREATE
If the target directory does not exist, create it and any required subdirectories.
« DB_EXCL
Return an EEXIST error if a target backup file already exists.
« DB_VERB_BACKUP
Run in verbose mode, listing operations as they are completed.
Errors
The DB_ENV->backup() method may fail and return one of the following non-zero errors:
EEXIST

DB_EXCL was specified for the flags parameter, and an existing target file was discovered
when attempting to back up a source file.

ENOENT
The target directory does not exist and DB_CREATE was not specified for the flags parameter.
EINVAL

An invalid flag value or parameter was specified.

2/17/2015

DB C API Page 209



Library Version 12.1.6.1 The DB_ENV Handle

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 210



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->close()

#tinclude <db.h>

int
DB_ENV->close(DB_ENV *dbenv, u_int32_t flags);

The DB_ENV->close() method closes the Berkeley DB environment, freeing any allocated
resources and closing all database handles opened with this environment handle, as well as
closing any underlying subsystems.

When you call the DB_ENV->close() method, all open DB handles and DBcursor handles are
closed automatically by this function. And, when you close a database handle, all cursors
opened with it are closed automatically.

In multiple threads of control, each thread of control opens a database environment and

the database handles within it. When you close each database handle using the DB_ENV-
>close() method, by default, the database is not synchronized and is similar to calling

the DB->close(DB_NOSYNC) method. This is to avoid unncessary database synchronization
when there are multiple environment handles open. To ensure all open database handles are
synchronized when you close the last environment handle, set the flag parameter value of
the DB_ENV->close() method to DB_FORCESYNC. This is similar to calling the DB->close(9)
method to close each database handle.

If a database close operation fails, the method returns a non-zero error value for the first
instance of such an error, and continues to close the rest of the database and environment
handles.

The DB_ENV handle should not be closed while any other handle that refers to it is not yet
closed; for example, database environment handles must not be closed while transactions
in the environment have not yet been committed or aborted. Specifically, this includes the
DB_TXN, DB_LOGC and DB_MPOOLFILE handles.

Where the environment was initialized with the DB_INIT_LOCK flag, calling DB_ENV->close()
does not release any locks still held by the closing process, providing functionality for long-
lived locks. Processes that want to have all their locks released can do so by issuing the
appropriate DB_ENV->lock_vec() (page 372) call.

Where the environment was initialized with the DB_INIT_MPOOL flag, calling DB_ENV-
>close() implies calls to DB_MPOOLFILE->close() (page 453) for any remaining open files in
the memory pool that were returned to this process by calls to DB_MPOOLFILE->open() (page
457). It does not imply a call to DB_MPOOLFILE->sync() (page 461) for those files.

Where the environment was initialized with the DB_INIT_TXN flag, calling DB_ENV->close()
aborts any unresolved transactions. Applications should not depend on this behavior for
transactions involving Berkeley DB databases; all such transactions should be explicitly
resolved. The problem with depending on this semantic is that aborting an unresolved
transaction involving database operations requires a database handle. Because the database
handles should have been closed before calling DB_ENV->close(), it will not be possible

to abort the transaction, and recovery will have to be run on the Berkeley DB environment
before further operations are done.

2/17/2015

DB C API Page 211



Library Version 12.1.6.1 The DB_ENV Handle

Where log cursors were created using the DB_ENV->log_cursor() (page 386) method, calling
DB_ENV->close() does not imply closing those cursors.

In multithreaded applications, only a single thread may call the DB_ENV->close() method.

After DB_ENV->close() has been called, regardless of its return, the Berkeley DB
environment handle may not be accessed again.

The DB_ENV->close() method returns a non-zero error value on failure and 0 on success.
Parameters

flags

The flags parameter must be set to 0 or be set to one of the following values:

e DB_FORCESYNC

When closing each database handle internally, synchronize the database. If this flag is not
specified, the database handle is closed without synchronizing the database.

e DB_FORCESYNCENV

When closing the enviroment, flush memory mapped environment regions to disk. Specifying
this flag may help prevent loss of updates when __db.00* files are on NFS storage.
However, there is a risk that this flag will significantly slow down this method call.

Class

DB_ENV

See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 212



Library Version 12.1.6.1 The DB_ENV Handle

db_env_create
#tinclude <db.h>

int

db_env_create(DB_ENV **dbenvp, u_int32_t flags);
The db_env_create() function creates a DB_ENV structure that is the handle for a Berkeley
DB environment. This function allocates memory for the structure, returning a pointer to the

structure in the memory to which dbenvp refers. To release the allocated memory and discard
the handle, call the DB_ENV->close() (page 211) or DB_ENV->remove() (page 262) methods.

DB_ENV handles are free-threaded if the DB_THREAD flag is specified to the DB_ENV-

>open() (page 256) method when the environment is opened. The DB_ENV handle should not
be closed while any other handle remains open that is using it as a reference (for example, DB
or DB_TXN). Once either the DB_ENV->close() (page 211) or DB_ENV->remove() (page 262)
methods are called, the handle may not be accessed again, regardless of the method's return.

Before the handle may be used, you must open it using the DB_ENV->open() (page 256)
method.

The DB_ENV handle contains a special field, app_private, which is declared as type void *.
This field is provided for the use of the application program. It is initialized to NULL and is not
further used by Berkeley DB in any way.

The db_env_create() method returns a non-zero error value on failure and 0 on success.
The flags parameter must be set to 0.

Class
DB_ENV

See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 213



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->dbbackup()

#include <db.h>

int
DB_ENV->dbbackup(DB_ENV *dbenv, const char *dbfile, const char *target,
u_int32_t flags);

The DB_ENV->dbbackup () method performs a hot backup of a single database file contained
within the environment.

To back up an entire environment, use the DB_ENV->backup() (page 208) method.

This method's default behavior can be changed by setting backup callbacks. See DB_ENV-
>set_backup_callbacks() (page 268) for more information. Additional tuning parameters can
also be set using the DB_ENV->set_backup_config() (page 271) method.

The DB_ENV->dbbackup() method may only be called after the environment handle has been
opened.

The DB_ENV->dbbackup() method returns a non-zero error value on failure and 0 on success.

Parameters
dbfile
Identifies the database file that you want to back up.
target

Identifies the directory in which the back up will be placed. This target must exist; otherwise
this method exits with an ENOENT error return.

Note that if the backup callbacks are set, then the value specified to this parameter is passed
on to the open_func() callback. If this parameter is NULL, then the target must be specified

directly to the open_func() callback.

flags

The flags parameter must be set to 0 or the following value:
« DB_EXCL

Return an EEXIST error if a target backup file already exists.

Errors
The DB_ENV->dbbackup() method may fail and return one of the following non-zero errors:
EEXIST

DB_EXCL was specified for the flags parameter, and an existing target file was discovered
when attempting to back up a source file.

2/17/2015 DB C API Page 214



Library Version 12.1.6.1 The DB_ENV Handle

ENOENT

The target directory does not exist.

EINVAL

An invalid flag value or parameter was specified.
Class

DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 215



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->dbremove()

#include <db.h>

int
DB_ENV->dbremove(DB_ENV *dbenv, DB_TXN *txnid,
const char *file, const char *database, u_int32 t flags);

The DB_ENV->dbremove () method removes the database specified by the file and database
parameters. If no database is specified, the underlying file represented by file is removed,
incidentally removing all of the databases it contained.

Applications should never remove databases with open DB handles, or in the case of removing
a file, when any database in the file has an open handle.

The DB_ENV->dbremove () method returns a non-zero error value on failure and 0 on success.

DB_ENV->dbremove() is affected by any database directory specified using the DB_ENV-
>add_data_dir() (page 206) method, or by setting the add_data_dir string in the
environment's DB_CONFIG file.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 627); if the operation is part

of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DB_ENV->cdsgroup_begin() (page 619); otherwise NULL. If no transaction handle is specified,
but the DB_AUTO_COMMIT flag is specified to either this method or the environment handle,
the operation will be implicitly transaction protected.

file

The file parameter is the physical file which contains the database(s) to be removed.
database

The database parameter is the database to be removed.

flags

The flags parameter must be set to 0 or the following value:

« DB_AUTO_COMMIT

Enclose the DB_ENV->dbremove () call within a transaction. If the call succeeds, changes
made by the operation will be recoverable. If the call fails, the operation will have made no
changes.

Environment Variables

The environment variable DB_HOME may be used as the path of the database environment
home.

2/17/2015 DB C API Page 216


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

Errors
The DB_ENV->dbremove () method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

EINVAL

If the method was called before DB_ENV->open() (page 256) was called; or if an invalid flag
value or parameter was specified.

ENOENT
The file or directory does not exist.
DB_META_CHKSUM_FAIL

Checksum mismatch detected on a database metadata page. Either the database is corrupted
or the file is not a Berkeley DB database file.

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 217



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->dbrename()

#include <db.h>

int
DB_ENV->dbrename(DB_ENV *dbenv, DB_TXN *txnid, const char *file,
const char *database, const char *newname, u_int32_t flags);

The DB_ENV->dbrename () method renames the database specified by the file and database
parameters to newname. If no database is specified, the underlying file represented by file is
renamed using the value supplied to newname, incidentally renaming all of the databases it
contained.

Applications should not rename databases that are currently in use. If an underlying file is
being renamed and logging is currently enabled in the database environment, no database in
the file may be open when the DB_ENV->dbrename() method is called.

The DB_ENV->dbrename() method returns a non-zero error value on failure and 0 on success.

DB_ENV->dbrename() is affected by any database directory specified using the DB_ENV-
>add_data_dir() (page 206) method, or by setting the add_data_dir string in the
environment's DB_CONFIG file.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a
transaction handle returned from DB_ENV->txn_begin() (page 627); if the operation is part

of a Berkeley DB Concurrent Data Store group, the txnid parameter is a handle returned from
DB_ENV->cdsgroup_begin() (page 619); otherwise NULL. If no transaction handle is specified,
but the DB_AUTO_COMMIT flag is specified to either this method or the environment handle,
the operation will be implicitly transaction protected.

file
The file parameter is the physical file which contains the database(s) to be renamed.

When using a Unicode build on Windows (the default), the file argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

database

The database parameter is the database to be renamed.
newname

The newname parameter is the new name of the database or file.
flags

The flags parameter must be set to 0 or the following value:

2/17/2015

DB C API Page 218


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

 DB_AUTO_COMMIT

Enclose the DB_ENV->dbrename () call within a transaction. If the call succeeds, changes
made by the operation will be recoverable. If the call fails, the operation will have made no
changes.

Environment Variables

The environment variable DB_HOME may be used as the path of the database environment
home.

Errors
The DB_ENV->dbrename() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was
unable to grant a lock in the allowed time.

You attempted to open a database handle that is configured for no waiting exclusive locking,
but the exclusive lock could not be immediately obtained. See DB->set_lk_exclusive() (page
122) for more information.

EINVAL

If the method was called before DB_ENV->open() (page 256) was called; or if an invalid flag
value or parameter was specified.

ENOENT
The file or directory does not exist.
DB_META_CHKSUM_FAIL

Checksum mismatch detected on a database metadata page. Either the database is corrupted
or the file is not a Berkeley DB database file.

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 219



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->err()

#tinclude <db.h>

void
DB_ENV->err(DB_ENV *dbenv, int error, const char *fmt, ...);

void
DB_ENV->errx(DB_ENV *dbenv, const char *fmt, ...);

The DB_ENV->err(), DB_ENV->errx, (), DB->err() (page 26) and DB->errx() methods
provide error-messaging functionality for applications written using the Berkeley DB library.

The DB->err() (page 26) and DB_ENV->err() (page 220) methods constructs an error message
consisting of the following elements:

« An optional prefix string
If no error callback function has been set using the DB_ENV->set_errcall() (page 286)
method, any prefix string specified using the DB_ENV->set_errpfx() (page 290) method,
followed by two separating characters: a colon and a <space> character.

« An optional printf-style message

The supplied message fmt, if non-NULL, in which the ANSI C X3.159-1989 (ANSI C) printf
function specifies how subsequent parameters are converted for output.

« A separator
Two separating characters: a colon and a <space> character.
« A standard error string

The standard system or Berkeley DB library error string associated with the error value, as
returned by the db_strerror (page 329) method.

This constructed error message is then handled as follows:

« If an error callback function has been set (see DB->set_errcall() (page 101) and DB_ENV-
>set_errcall() (page 286)), that function is called with two parameters: any prefix string
specified (see DB->set_errpfx() (page 105) and DB_ENV->set_errpfx() (page 290)) and the
error message.

« If a C library FILE * has been set (see DB->set_errfile() (page 103) and DB_ENV-
>set_errfile() (page 288)), the error message is written to that output stream.

« If none of these output options have been configured, the error message is written to stderr,
the standard error output stream.

2/17/2015

DB C API Page 220



Library Version 12.1.6.1 The DB_ENV Handle

Parameters

error

The error parameter is the error value for which the DB_ENV->err() and DB->err() (page 26)
methods will display a explanatory string.

fmt

The fmt parameter is an optional printf-style message to display.
Class

DB_ENV

See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 221



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->failchk()

#include <db.h>

int
DB_ENV->failchk(DB_ENV *dbenv, u_int32_t flags);

The DB_ENV->failchk() method checks for threads of control (either a true thread or a
process) that have exited while manipulating Berkeley DB library data structures, while
holding a logical database lock, or with an unresolved transaction (that is, a transaction that
was never aborted or committed). For more information, see Architecting Data Store and
Concurrent Data Store applications, and Architecting Transactional Data Store applications,
both in the Berkeley DB Programmer’s Reference Guide.

The DB_ENV->failchk() method is used in conjunction with the DB_ENV-
>set_thread_count() (page 314), DB_ENV->set_isalive() (page 302) and DB_ENV-
>set_thread_id() (page 316) methods. Before calling the failchk()method, applications
must:

1. Configure their database using the DB_ENV->set_thread_count() (page 314) method.

2. Establish an is_alive() function and invoke DB_ENV->set_isalive() (page 302) with that
function as the is_alive parameter.

3. Establish a thread_id function and invoke DB_ENV->set_thread_id() (page 316) with
that function as the thread_id parameter.

If any of these methods are omitted, a program may be unable to allocate a thread control
block. This is true of the standalone Berkeley DB utility programs. To avoid problems when
using the standalone Berkeley DB utility programs with environments configured for failure
checking, incorporate the utility's functionality directly in the application, or call the DB_ENV-
>failchk() method along with its associated methods before running the utility.

If DB_ENV->failchk() determines a thread of control exited while holding database read
locks, it will release those locks. If DB_ENV->failchk() determines a thread of control exited
with an unresolved transaction, the transaction will be aborted. In either of these cases,
DB_ENV->failchk() will return O and the application may continue to use the database
environment.

In either of these cases, the DB_ENV->failchk() method will also report the process and
thread IDs associated with any released locks or aborted transactions. The information is
printed to a specified output channel (see the DB_ENV->set_msgfile() (page 311) method
for more information), or passed to an application callback function (see the DB_ENV-
>set_msgcall() (page 309) method for more information).

If DB_ENV->failchk() determines a thread of control has exited such that database
environment recovery is required, it will return DB_RUNRECOVERY. In this case, the
application should not continue to use the database environment. For a further description
as to the actions the application should take when this failure occurs, see Handling failure in
Data Store and Concurrent Data Store applications, and Handling failure in Transactional Data
Store applications, both in the Berkeley DB Programmer’s Reference Guide.

2/17/2015

DB C API Page 222


../../programmer_reference/cam_app.html
../../programmer_reference/cam_app.html
../../programmer_reference/transapp_app.html
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/cam_fail.html
../../programmer_reference/cam_fail.html
../../programmer_reference/transapp_fail.html
../../programmer_reference/transapp_fail.html

Library Version 12.1.6.1 The DB_ENV Handle

In multiprocess applications, it is recommended that the DB_ENV handle used to invoke the
DB_ENV->failchk() method not be shared and therefore not free-threaded.

The DB_ENV->failchk() method may not be called by the application before the DB_ENV-
>open() (page 256) method is called.

The DB_ENV->failchk() method returns a non-zero error value on failure and 0 on success.
Parameters
flags
The flags parameter is currently unused, and must be set to 0.
Errors
The DB_ENV->failchk() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 223



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->fileid_reset()

#tinclude <db.h>

int
DB_ENV->fileid reset(DB_ENV *dbenv, const char *file, u_int32_t flags);

The DB_ENV->fileid_reset() method allows database files to be copied, and then the copy
used in the same database environment as the original.

All databases contain an ID string used to identify the database in the database environment
cache. If a physical database file is copied, and used in the same environment as another file

with the same ID strings, corruption can occur. The DB_ENV->fileid reset() method creates
new ID strings for all of the databases in the physical file.

The DB_ENV->fileid_reset() method modifies the physical file, in-place. Applications
should not reset IDs in files that are currently in use.

The DB_ENV->fileid reset() method may be called at any time during the life of the
application.

The DB_ENV->fileid reset() method returns a non-zero error value on failure and 0 on
success.

Parameters
file
The name of the physical file in which new file IDs are to be created.
flags
The flags parameter must be set to 0 or the following value:
e DB_ENCRYPT
The file contains encrypted databases.
Errors

The DB_ENV->fileid_reset() method may fail and return one of the following non-zero
errors:

EINVAL
An invalid flag value or parameter was specified.
Class

DB_ENV

2/17/2015 DB C API Page 224



Library Version 12.1.6.1 The DB_ENV Handle

See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 225



Library Version 12.1.6.1 The DB_ENV Handle

db_full_version
#tinclude <db.h>

char *
db_full version(int *family, int *release, int *major, int *minor,
int *patch);

The db_full_version() method returns a pointer to a string, suitable for display, containing
Berkeley DB version information. The string includes Oracle family and release numbers, as
well as Berkeley DB's traditional major, minor, and patch numbers.

Parameters

family

If family is non-NULL, the Oracle family number of the Berkeley DB release is copied to the
memory to which it refers.

release

If release is non-NULL, the Oracle release number of the Berkeley DB release is copied to the
memory to which it refers.

major

If major is non-NULL, the major version of the Berkeley DB release is copied to the memory to
which it refers.

minor

If minor is non-NULL, the minor version of the Berkeley DB release is copied to the memory to
which it refers.

patch

If patch is non-NULL, the patch version of the Berkeley DB release is copied to the memory to
which it refers.

Class
DB_ENV

See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 226



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_create_dir()

#tinclude <db.h>

int
DB_ENV->get_create_dir(DB_ENV *dbenv, const char **dirp);

The DB_ENV->get_create_dir() method returns a pointer to the name of the directory to
create databases in.

The DB_ENV->get_create_dir() method may be called at any time during the life of the
application.

The DB_ENV->get_create_dir() method returns a non-zero error value on failure and 0 on
success.

Parameters
dirp

The DB_ENV->get_create_dir() method returns a ponter to the name of the directory in
dirp.

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 227



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_data_dirs()

#tinclude <db.h>

int
DB_ENV->get_data_dirs(DB_ENV *dbenv, const char ***dirpp);

The DB_ENV->get_data_dirs() method returns the NULL-terminated array of directories.

The DB_ENV->get_data_dirs() method may be called at any time during the life of the
application.

The DB_ENV->get_data_dirs() method returns a non-zero error value on failure and 0 on
success.

Parameters

dirpp

The DB_ENV->get_data_dirs() method returns a reference to the NULL-terminated array of
directories in dirpp.

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 228



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_data_len()

#tinclude <db.h>

int
DB_ENV->get_data_len(DB_ENV *dbenv, u_int32_t *bytes);

The DB_ENV->get_data_len() method returns the maximum number of bytes to display for
each key/data item when dumping the database or printing the log. This limit can be set using
the DB_ENV->set_data_len() (page 275) method.

The DB_ENV->get_data_len() method may be called at any time during the life of the
application.

The DB_ENV->get_data_len() method returns a non-zero error value on failure and 0 on
success.

Parameters
bytes

The bytes parameter references memory into which is copied the maximum number of bytes
to display when dumping the database or printing the log.

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 229



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_encrypt_flags()

#tinclude <db.h>

int
DB_ENV->get_encrypt_flags(DB_ENV *dbenv, u_int32_t *flagsp);

The DB_ENV->get_encrypt_flags() method returns the encryption flags.

The DB_ENV->get_encrypt_flags() method may be called at any time during the life of the
application.

The DB_ENV->get_encrypt_flags() method returns a non-zero error value on failure and 0
on success.

Parameters

flagsp

The DB_ENV->get_encrypt_flags() method returns the encryption flags in flagsp.
Class

DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 230



Library Version 12.1.6.1 The DB_ENV Handle

DB->get_env()

#tinclude <db.h>

DB_ENV *
DB->get_env(DB *db);

The DB->get_env() method returns the handle for the database environment underlying the
database.

The DB->get_env () method may be called at any time during the life of the application.
Class

DB
See Also

Database and Related Methods (page 3)

2/17/2015 DB C API Page 231



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_errfile()

#tinclude <db.h>

void

DB_ENV->get_errfile(DB_ENV *dbenv, FILE **errfilep);
The DB_ENV->get_errfile() method returns the FILE * used for displaying additional
Berkeley DB error messages. This C library is set using the DB_ENV->set_errfile() (page 288)
method.

The DB_ENV->get_errfile() method may be called at any time during the life of the
application.

Parameters

errfilep

The DB_ENV->get_errfile() method returns the FILE * in errfilep.
Class

DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 232



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_errpfx()

#tinclude <db.h>

void

DB_ENV->get_errpfx(DB_ENV *dbenv, const char **errpfxp);
The DB_ENV->get_errpfx() method returns the error prefix that appears before error
messages issued by Berkeley DB. This error prefix is set using the DB_ENV->set_errpfx() (page
290) method.

The DB_ENV->get_errpfx() method may be called at any time during the life of the
application.

Parameters

errpfxp

The DB_ENV->get_errpfx() method returns a reference to the error prefix in errpfxp.
Class

DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 233



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_backup_callbacks()

#tinclude <db.h>

DB_ENV->get_backup_callbacks(DB_ENV,
int (**open_func)(DB_ENV *, const char *dbname,
const char *target, void **handle),
int (**write_func)(DB_ENV *, u_int32_t offset_gbytes,
u_int32_t offset_bytes, u_int32_t size,
u_int8_t *buf, void *handle),
int (**close_func)(DB_ENV *, const char *dbname, void *handle));

The DB_ENV->get_backup_callbacks() method retrieves the three callback functions
which can be used by the DB_ENV->backup() (page 208) or DB_ENV->dbbackup() (page 214)
methods to override their default behavior. These callbacks are configured using the DB_ENV-
>set_backup_callbacks() (page 268) method.

The DB_ENV->get_backup_callbacks() method may be called at any time during the life of
the application.

The DB_ENV->get_backup_callbacks() method returns a non-zero error value on failure and
0 on success.

Parameters
open_func

The open_func parameter is the function used when a target location is opened during a
backup.

write_func
The close_func parameter is the function used to write data during a backup.
close_func

The close_func parameter is the function used when ending a backup and closing a backup
target.

Class
DB_ENV

See Also

Database Environments and Related Methods (page 204), DB_ENV-
>set_backup_callbacks() (page 268), DB_ENV->backup() (page 208), and DB_ENV-
>dbbackup() (page 214).

2/17/2015 DB C API Page 234



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_backup_config()

#include <db.h>

DB_ENV->get_backup_config(DB_ENV, DB_BACKUP_CONFIG option,
u_int32_t *valuep);

The DB_ENV->get_backup_config() method retrieves the value set for hot backup tuning
parameters. See the DB_ENV->backup() (page 208) and DB_ENV->dbbackup() (page 214)
methods for a description of the hot backup APIs. These tuning parameters can be set using
the DB_ENV->set_backup_config() (page 271) method.

The DB_ENV->get_backup_config() method may be called at any time during the life of the
application.

The DB_ENV->get_backup_config() method returns a non-zero error value on failure and 0
on success.

Parameters
option

The option parameter identifies the backup parameter to be retrieved. It must be one of the
following:

e DB_BACKUP_WRITE_DIRECT

Turning this on causes direct I/0 to be used when writing pages to the disk.
« DB_BACKUP_READ_COUNT

Configures the number of pages to read before pausing.
« DB_BACKUP_READ_SLEEP

Configures the number of microseconds to sleep between batches of reads.
o DB_BACKUP_SIZE

Configures the size of the buffer, in megabytes, to read from the database.
valuep

The valuep parameter references memory into which is copied the current value of the
backup tuning parameter identified by the option parameter.

Class
DB_ENV,
See Also

Database Environments and Related Methods (page 204), DB_ENV->set_backup_config() (page
271), DB_ENV->backup() (page 208), DB_ENV->dbbackup() (page 214)

2/17/2015 DB C API Page 235



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_flags()

#tinclude <db.h>

int
DB_ENV->get_flags(DB_ENV *dbenv, u_int32_t *flagsp);

The DB_ENV->get_flags() method returns the configuration flags set for a DB_ENV handle.
These flags are set using the DB_ENV->set_flags() (page 293) method.

The DB_ENV->get_flags() method may be called at any time during the life of the
application.

The DB_ENV->get_flags() method returns a non-zero error value on failure and 0 on success.
Parameters

flagsp

The DB_ENV->get_flags() method returns the configuration flags in flagsp.
Class

DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 236



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_home()

#tinclude <db.h>

int
DB_ENV->get_home(DB_ENV *dbenv, const char **homep);

The DB_ENV->get_home() method returns the database environment home directory. This
directory is normally identified when the DB_ENV->open() (page 256) method is called.

The DB_ENV->get_home() method may be called at any time during the life of the
application.

The DB_ENV->get_home() method returns a non-zero error value on failure and 0 on success.
Class

DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 237



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_intermediate_dir_mode()

#tinclude <db.h>

int
DB_ENV->get_intermediate_dir_mode(DB_ENV *dbenv, const char **modep);

The DB_ENV->get_intermediate_dir_mode() method returns the intermediate directory
permissions.

Intermediate directories are directories needed for recovery. Normally,
Berkeley DB does not create these directories and will do so only if the DB_ENV-
>set_intermediate_dir_mode() (page 300) method is called.

The DB_ENV->get _intermediate_dir_mode() method may be called at any time during the
life of the application.

The DB_ENV->get _intermediate_dir_mode() method returns a non-zero error value on
failure and 0 on success.

Parameters

modep

The DB_ENV->get_intermediate_dir_mode() method returns a reference to the
intermediate directory permissions in modep.

Class
DB_ENV

See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 238



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_memory_init()

#tinclude <db.h>

int
DB_ENV->get_memory_init(DB_ENV *dbenv, DB_MEM_CONFIG type,
u_int32_t *countp);

The DB_ENV->get _memory_init() method returns the number of objects to allocate and
initialize when an environment is created. The count is returned for a specific named
structure. The count for each structure is set using the DB_ENV->set_memory_init() (page
304) method.

The DB_ENV->get_memory_init() method may be called at any time during the life of the
application.

The DB_ENV->get memory_init() method returns a non-zero error value on failure and 0 on
success.

Parameters

type

The struct parameter identifies the structure for which you want an object count returned. It
must be one of the following values:

« DB_MEM_LOCK

Initialize locks. A thread uses this structure to lock a page (or record for the QUEUE access
method) and hold it to the end of a transactions.

e DB_MEM_LOCKOBIJECT

Initialize lock objects. For each page (or record) which is locked in the system, a lock object
will be allocated.

« DB_MEM_LOCKER

Initialize lockers. Each thread which is active in a transactional environment will use a
locker structure either for each transaction which is active, or for each non-transactional
cursor that is active.

+ DB_MEM_LOGID

Initialize the log fileid structures. For each database handle which is opened for writing in a
transactional environment, a log fileid structure is used.

e DB_MEM_TRANSACTION

Initialize transaction structures. Each active transaction uses a transaction structure until it
either commits or aborts.

2/17/2015

DB C API Page 239



Library Version 12.1.6.1 The DB_ENV Handle

o DB_MEM_THREAD
Initialize thread identification structures. If thread tracking is enabled then each active
thread will use a structure. Note that since a thread does not signal the BDB library that

it will no longer be making calls, unused structures may accumulate until a cleanup is
triggered either using a high water mark or by running DB_ENV->failchk() (page 222).

countp

The countp parameter references memory into which the object count for the specified
structure is copied.

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 240



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_memory_max()

#tinclude <db.h>

int
DB_ENV->get_memory_max(DB_ENV *dbenv, u_int32_t *gbytesp,
u_int32_t *bytesp);

The DB_ENV->get_memory_max () method returns the maximum amount of memory to be used
by shared structures other than mutexes and the page cache (memory pool). This value is set
using the DB_ENV->set_memory_max() (page 306) method.

The DB_ENV->get_memory_max () method may be called at any time during the life of the
application.

The DB_ENV->get_memory_max () method returns a non-zero error value on failure and 0 on
success.

Parameters
gbytesp

The gbytesp parameter references memory into which is copied the maximum number of
gigabytes of memory that can be allocated.

bytesp

The bytesp parameter references memory into which is copied the additional bytes of
memory that can be allocated.

sizep

The sizep parameter references memory into which is copied the maximum number of bytes
to be allocated.

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 241



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_metadata_dir()

#tinclude <db.h>

int
DB_ENV->get_metadata_dir(DB_ENV *envp, const char **dirp);

The DB_ENV->get_metadata_dir() method returns the directory where persistent metadata
is stored. This location can be set using the DB_ENV->set_metadata_dir() (page 308) method.

The DB_ENV->get_metadata_dir() directory may be called at any time during the life of the
application.

The DB_ENV->get_metadata_dir() method returns a non-zero error value on failure and 0 on
success.

Parameters
dirp

The dirp parameter references memory into which is copied the directory which contains
persistent metadata files.

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204), DB_ENV->set_metadata_dir() (page
308)

2/17/2015 DB C API Page 242



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_msgdgfile()

#tinclude <db.h>

void
DB_ENV->get_msgfile(DB_ENV *dbenv, FILE **msgfilep);

The DB_ENV->get_msgfile() method returns the FILE * used for displaying messages. This
is set using the DB_ENV->set_msgfile() (page 311) method.

The DB_ENV->get_msgfile() method may be called at any time during the life of the
application.

Parameters

msdfilep

The DB_ENV->get_msgfile() method returns the FILE * in msgfilep.
Class

DB_ENV

See Also

Database Environments and Related Methods (page 204), DB_ENV->set_msgfile() (page 311)

2/17/2015 DB C API Page 243



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_open_flags()

#tinclude <db.h>

int
DB_ENV->get_open_flags(DB_ENV *dbenv, u_int32_t *flagsp);

The DB_ENV->get_open_flags() method returns the open method flags originally used to
create the database environment.

The DB_ENV->get_open_flags() method may not be called before the DB_ENV->open()
method is called.

The DB_ENV->get_open_flags() method returns a non-zero error value on failure and 0 on
success.

Parameters
flagsp

The DB_ENV->get_open_flags() method returns the open method flags originally used to
create the database environment in flagsp.

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204), DB_ENV->open() (page 256)

2/17/2015 DB C API Page 244



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_shm_key()

#tinclude <db.h>

int
DB_ENV->get_shm_key(DB_ENV *dbenv, long *shm_keyp);

The DB_ENV->get_shm_key() method returns the base segment ID. This is used for Berkeley
DB environment shared memory regions created in system memory on VxWorks or systems
supporting X/Open-style shared memory interfaces. It may be specified using the DB_ENV-
>set_shm_key() (page 312) method.

The DB_ENV->get_shm_key() method may be called at any time during the life of the
application.

The DB_ENV->get_shm_key() method returns a non-zero error value on failure and 0 on
success.

Parameters

shm_keyp

The DB_ENV->get_shm_key() method returns the base segment ID in shm_keyp.
Class

DB_ENV
See Also

Database Environments and Related Methods (page 204), DB_ENV->set_shm_key() (page 312)

2/17/2015 DB C API Page 245



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_thread_count()

#tinclude <db.h>

int
DB_ENV->get_thread_count(DB_ENV *dbenv, u_int32_t *countp);

The DB_ENV->get_thread_count() method returns the thread count as set by the DB_ENV-
>set_thread_count() (page 314) method.

The DB_ENV->get_thread_count() method may be called at any time during the life of the
application.

The DB_ENV->get_thread_count() method returns a non-zero error value on failure and 0 on
success.

Parameters

countp

The DB_ENV->get_thread_count() method returns the thread count in countp.
Class

DB_ENV
See Also

Database Environments and Related Methods (page 204), DB_ENV->set_thread_count() (page
314)

2/17/2015 DB C API Page 246



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_timeout()
#include <db.h>
int
DB_ENV->get_timeout(DB_ENV *dbenv, db_timeout_t *timeoutp,
u_int32_t flag);

The DB_ENV->get_timeout() method returns a value, in microseconds, representing either
lock or transaction timeouts. These values are set using the DB_ENV->set_timeout() (page
320) method.

The DB_ENV->get_timeout() method may be called at any time during the life of the
application.

The DB_ENV->get_timeout() method returns a non-zero error value on failure and 0 on
success.

Parameters
timeoutp

The timeoutp parameter references memory into which the timeout value of the specified
flag parameter is copied.

flag
The flags parameter must be set to one of the following values:
o DB_SET_LOCK_TIMEOUT
Return the timeout value for locks in this database environment.
« DB_SET_REG_TIMEOUT

Return the timeout value for how long to wait for processes to exit the environment before
recovery is started. This flag only has meaning when the DB_ENV->open() (page 256)
method was called with the DB_REGISTER flag and recovery must be performed.
e DB_SET_TXN_TIMEOUT
Return the timeout value for transactions in this database environment.
Class
DB_ENV
See Also

Database Environments and Related Methods (page 204), DB_ENV->set_timeout() (page 320)

2/17/2015 DB C API Page 247



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_tmp_dir()

#tinclude <db.h>

int
DB_ENV->get_tmp_dir(DB_ENV *dbenv, const char **dirp);

The DB_ENV->get_tmp_dir() method returns the database environment temporary file
directory.

The DB_ENV->get_tmp_dir() method may be called at any time during the life of the
application.

The DB_ENV->get_tmp_dir() method returns a non-zero error value on failure and 0 on
success.

Parameters
dirp

The DB_ENV->get_tmp_dir() method returns a reference to the database environment
temporary file directory in dirp.

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204), DB_ENV->set_tmp_dir() (page 323)

2/17/2015 DB C API Page 248



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->get_verbose()

#tinclude <db.h>

int
DB_ENV->get_verbose(DB_ENV *dbenv, u_int32_t which, int *onoffp);
The DB_ENV->get _verbose() method returns whether the specified which parameter is

currently set or not. These parameters are set using the DB_ENV->set_verbose() (page 325)
method.

The DB_ENV->get_verbose() method may be called at any time during the life of the
application.

The DB_ENV->get_verbose() method returns a non-zero error value on failure and 0 on
success.

Parameters

which

The which parameter is the message value for which configuration is being checked. Must be
set to one of the following values:

e DB_VERB_DEADLOCK
Display additional information when doing deadlock detection.
« DB_VERB_FILEOPS

Display additional information when performing filesystem operations such as open, close or
rename. May not be available on all platforms.

+ DB_VERB_FILEOPS_ALL

Display additional information when performing all filesystem operations, including read and
write. May not be available on all platforms.

« DB_VERB_RECOVERY
Display additional information when performing recovery.
« DB_VERB_REGISTER

Display additional information concerning support for the DB_REGISTER flag to the DB_ENV-
>open() (page 256) method.

e DB_VERB_REPLICATION

Display all detailed information about replication. This includes the information displayed
by all of the other DB_VERB_REP_* and DB_VERB_REPMGR_* values.

2/17/2015

DB C API Page 249



Library Version 12.1.6.1 The DB_ENV Handle

« DB_VERB_REP_ELECT

Display detailed information about replication elections.
« DB_VERB_REP_LEASE

Display detailed information about replication master leases.
« DB_VERB_REP_MISC

Display detailed information about general replication processing not covered by the other
DB_VERB_REP_* values.

« DB_VERB_REP_MSGS

Display detailed information about replication message processing.
« DB_VERB_REP_SYNC

Display detailed information about replication client synchronization.
o DB_VERB_REP_SYSTEM

Saves replication system information to a system-owned file. This value is on by default.
e DB_VERB_REPMGR_CONNFATIL

Display detailed information about Replication Manager connection failures.
 DB_VERB_REPMGR_MISC

Display detailed information about general Replication Manager processing.
e DB_VERB_WAITSFOR

Display the waits-for table when doing deadlock detection.
onoffp

The onoffp parameter references memory into which the configuration of the specified which
parameter is copied.

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 250



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->log_verify()

#include <db.h>
int
DB_ENV->log_verify(DB_ENV *dbenv, const DB_LOG_VERIFY_CONFIG *config);

The DB_ENV->log_verify() method verifies the integrity of the log records of an
environment and writes both error and normal messages to the error/message output facility
of the database environment handle.

The DB_ENV->1og_verify() method does not perform the locking function, even in Berkeley
DB environments that are configured with a locking subsystem. Because this function does
not access any database files, you can call it even when the environment has other threads of
control attached and running.

The DB_ENV->1log_verify() method is the underlying method used by the DB_ENV->
db_log verify utility. See the DB_ENV-> db_log verify utility source code for an example
of using DB_ENV->1log_verify() in a IEEE/ANSI Std 1003.1 (POSIX) environment.

The DB_ENV->log_verify() method returns DB_LOG_VERIFY_BAD when either log errors are
detected or the internal data storage layer does not work. It returns EINVAL if you specify
wrong configurations. Unless otherwise specified, the DB_ENV->1log_verify() method returns
a non-zero error value on failure and 0 on success.

Parameters

config

The configuration parameter of type DB_LOG_VERIFY_CONFIG is for the verification of log
files. A struct variable of this type must be memset to 0 before setting any configurations to
it.

DB_LOG_VERIFY_CONFIG members

struct __db_logvrfy config {

int continue_after_fail, verbose;
u_int32_t cachesize;

const char *temp_envhome;

const char *dbfile, *dbname;
DB_LSN start_1lsn, end_lsn;

time_t start_time, end_time;

s
continue_after_fail

The continue_after_fail parameter specifies whether or not continue the verification process
when an error in the log is detected.

verbose

The verbose parameter specifies whether or not to display verbose output during the
verification process.

2/17/2015

DB C API Page 251



Library Version 12.1.6.1 The DB_ENV Handle

cachesize

The cachesize parameter specifies the size of the cache of the temporary internal
environment in bytes.

temp_envhome

The temp_envhome parameter is the home directory of the temporary database environment
that is used internally during the verification. It can be NULL, meaning the environment and
all databases are in-memory.

dbfile

The dbfile parameter specifies that for log records involving a database file, only those
related to this database file are verified. Log records not involving database files are verified
regardless of this parameter.

dbname

The dbname parameter specifies that for log records involving a database file, only those
related to this database file are verified. Log records not involving database files are verified
regardless of this parameter.

start_Isn and end_lIsn

The start_lsn and end_Isn parameters specify the range of log records from the entire log
set, that must be verified. Either of them can be [0][0], to specify an open ended range. If
both of them are [0][0] (by default) the entire log is verified.

start_time and end_time

The start_time and end_time parameters specify range of log records from the entire log
set that must be verified for a time range. Either of them can be 0, to specify an open ended

range. If both of them are 0 (by default), the entire log is verified.

Note that the time range specified is not precise, because such a time range is converted to
an Isn range based on the time points we know from transaction commits and checkpoints.

You can specify either an lsn range or a time range. You can neither specify both nor specify
an lsn and a time as a range.

Environment Variables

If the database is opened within a database environment, the environment variable DB_HOME
can be used as the path of the database environment home.

Errors

The DB_ENV->log_verify() method may fail and return one of the following non-zero errors:

EINVAL or DB_LOG_VERIFY_BAD.

2/17/2015

DB C API Page 252



Library Version 12.1.6.1 The DB_ENV Handle

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 253



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->Isn_reset()

#tinclude <db.h>

int
DB_ENV->1sn_reset(DB_ENV *dbenv, const char *file, u_int32_t flags);

The DB_ENV->1sn_reset() method allows database files to be moved from one transactional
database environment to another.

Database pages in transactional database environments contain references to the
environment's log files (that is, log sequence numbers, or LSNs). Copying or moving a database
file from one database environment to another, and then modifying it, can result in data
corruption if the LSNs are not first cleared.

Note that LSNs should be reset before moving or copying the database file into a new database
environment, rather than moving or copying the database file and then resetting the LSNs.
Berkeley DB has consistency checks that may be triggered if an application calls DB_ENV-

>1sn_reset() on a database in a new environment when the database LSNs still reflect the
old environment.

The DB_ENV->1sn_reset() method modifies the physical file, in-place. Applications should
not reset LSNs in files that are currently in use.

The DB_ENV->1sn_reset() method may be called at any time during the life of the
application.

The DB_ENV->1sn_reset() method returns a non-zero error value on failure and 0 on success.
Parameters

file

The name of the physical file in which the LSNs are to be cleared.

flags

The flags parameter must be set to 0 or the following value:

e DB_ENCRYPT

The file contains encrypted databases.

Errors

The DB_ENV->1sn_reset() method may fail and return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

2/17/2015 DB C API Page 254



Library Version 12.1.6.1 The DB_ENV Handle

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 255



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->open()

#tinclude <db.h>

int
DB_ENV->open(DB_ENV *dbenv, char *db_home, u_int32_t flags, int mode);

The DB_ENV->open() method opens a Berkeley DB environment. It provides a structure for
creating a consistent environment for processes using one or more of the features of Berkeley
DB.

The DB_ENV->open() method method returns a non-zero error value on failure and 0 on
success. If DB_ENV->open() fails, the DB_ENV->close() (page 211) method must be called to
discard the DB_ENV handle.

Warning

Using environments with some journaling filesystems might result in log file
corruption. This can occur if the operating system experiences an unclean shutdown
when a log file is being created. Please see Using Recovery on Journaling Filesystems
in the Berkeley DB Programmer's Reference Guide for more information.

Parameters

db_home

The db_home parameter is the database environment's home directory. For more information
on db_home, and filename resolution in general, see Berkeley DB File Naming. The
environment variable DB_HOME may be used as the path of the database home, as described
in Berkeley DB File Naming.

When using a Unicode build on Windows (the default), the db_home argument will be
interpreted as a UTF-8 string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter specifies the subsystems that are initialized and how the application's
environment affects Berkeley DB file naming, among other things. The flags parameter must
be set to 0 or by bitwise inclusively OR'ing together one or more of the values described in this
section.

Because there are a large number of flags that can be specified, they have been grouped
together by functionality. The first group of flags indicates which of the Berkeley DB
subsystems should be initialized.

The choice of subsystems initialized for a Berkeley DB database environment is specified by
the thread of control initially creating the environment. Any subsequent thread of control
joining the environment will automatically be configured to use the same subsystems as were
created in the environment (unless the thread of control requests a subsystem not available

in the environment, which will fail). Applications joining an environment, able to adapt to
whatever subsystems have been configured in the environment, should open the environment
without specifying any subsystem flags. Applications joining an environment, requiring specific

2/17/2015

DB C API Page 256


../../programmer_reference/transapp_journal.html
../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html

Library Version 12.1.6.1 The DB_ENV Handle

subsystems from their environments, should open the environment specifying those specific
subsystem flags.

« DB_INIT_CDB

Initialize locking for the Berkeley DB Concurrent Data Store product. In this mode, Berkeley
DB provides multiple reader/single writer access. The only other subsystem that should be
specified with the DB_INIT_CDB flag is DB_INIT_MPOOL.

« DB_INIT_LOCK

Initialize the locking subsystem. This subsystem should be used when multiple processes
or threads are going to be reading and writing a Berkeley DB database, so that they do not
interfere with each other. If all threads are accessing the database(s) read-only, locking

is unnecessary. When the DB_INIT_LOCK flag is specified, it is usually necessary to run a
deadlock detector, as well. See db_deadlock and DB_ENV->lock_detect() (page 356) for
more information.

+ DB_INIT_LOG

Initialize the logging subsystem. This subsystem should be used when recovery from
application or system failure is necessary. If the log region is being created and log files are
already present, the log files are reviewed; subsequent log writes are appended to the end
of the log, rather than overwriting current log entries.

« DB_INIT_MPOOL

Initialize the shared memory buffer pool subsystem. This subsystem should be used
whenever an application is using any Berkeley DB access method.

« DB_INIT_REP

Initialize the replication subsystem. This subsystem should be used whenever an application
plans on using replication. The DB_INIT_REP flag requires the DB_INIT_TXN and
DB_INIT_LOCK flags also be configured.

You can also specify this flag in the DB_CONFIG configuration file. The syntax is a single

line with the string "set_open_flags", one or more whitespace characters, the string
"DB_INIT_REP", optionally one or more whitespace characters and the string "on" or

"off". If the optional string is omitted, the default is "on"; for example, "set_open_flags
DB_INIT_REP" or "set_open_flags DB_INIT_REP on". Because the DB_CONFIG file is read when
the database environment is opened, it will silently overrule configuration done before that
time.

o DB_INIT_TXN

Initialize the transaction subsystem. This subsystem should be used when recovery
and atomicity of multiple operations are important. The DB_INIT_TXN flag implies the
DB_INIT_LOG flag.

The second group of flags govern what recovery, if any, is performed when the environment is
initialized:

2/17/2015

DB C API Page 257


../../programmer_reference/cam.html#cam_intro
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

e DB_RECOVER

Run normal recovery on this environment before opening it for normal use. If this flag is
set, the DB_CREATE and DB_INIT_TXN flags must also be set, because the regions will be
removed and re-created, and transactions are required for application recovery.

e DB_RECOVER_FATAL

Run catastrophic recovery on this environment before opening it for normal use. If this flag
is set, the DB_CREATE and DB_INIT_TXN flags must also be set, because the regions will be
removed and re-created, and transactions are required for application recovery.

A standard part of the recovery process is to remove the existing Berkeley DB environment and
create a new one in which to perform recovery. If the thread of control performing recovery
does not specify the correct region initialization information (for example, the correct
memory pool cache size), the result can be an application running in an environment with
incorrect cache and other subsystem sizes. For this reason, the thread of control performing
recovery should specify correct configuration information before calling the DB_ENV->open()
method; or it should remove the environment after recovery is completed, leaving creation of
the correctly sized environment to a subsequent call to the DB_ENV->open() method.

All Berkeley DB recovery processing must be single-threaded; that is, only a single thread of
control may perform recovery or access a Berkeley DB environment while recovery is being
performed. Because it is not an error to specify DB_RECOVER for an environment for which
no recovery is required, it is reasonable programming practice for the thread of control
responsible for performing recovery and creating the environment to always specify the
DB_CREATE and DB_RECOVER flags during startup.

The third group of flags govern file-naming extensions in the environment:
o DB_USE_ENVIRON

The Berkeley DB process’ environment may be permitted to specify information to be used
when naming files; see Berkeley DB File Naming. Because permitting users to specify which
files are used can create security problems, environment information will be used in file
naming for all users only if the DB_USE_ENVIRON flag is set.

o DB_USE_ENVIRON_ROOT
The Berkeley DB process’ environment may be permitted to specify information to be
used when naming files; see Berkeley DB File Naming. Because permitting users to specify
which files are used can create security problems, if the DB_USE_ENVIRON_ROOT flag is
set, environment information will be used in file naming only for users with appropriate
permissions (for example, users with a user-ID of 0 on UNIX systems).

Finally, there are a few additional unrelated flags:

e DB_CREATE

Cause Berkeley DB subsystems to create any underlying files, as necessary.

2/17/2015 DB C API Page 258


../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html

Library Version 12.1.6.1 The DB_ENV Handle

e DB_LOCKDOWN

Lock shared Berkeley DB environment files and memory-mapped databases into memory.
If the operating systems does not support the mlock() system call, then this flag has no
effect.

DB_FAILCHK

Internally call the DB_ENV->failchk() (page 222) method as part of opening the environment.
When DB_FAILCHK is specified, a check is made to ensure all DB_ENV->failchk()
prerequisites are meet.

If the DB_FAILCHK flag is used in conjunction with the DB_REGISTER flag, then a check

will be made to see if the environment needs recovery. If recovery is needed, a call will

be made to the DB_ENV->failchk() method to release any database reads locks held by
the thread of control that exited and, if needed, to abort the unresolved transaction. If
DB_ENV->failchk() determines environment recovery is still required, the recovery actions
for DB_REGISTER will be followed.

If the DB_FAILCHK flag is not used in conjunction with the DB_REGISTER flag, then make an
internal call to DB_ENV->failchk() as the last step of opening the environment. If DB_ENV-
>failchk() determines database environment recovery is required, DB_RUNRECOVERY will
be returned.

DB_PRIVATE

Allocate region memory from the heap instead of from memory backed by the filesystem or
system shared memory.

Note

Use of this flag means that the environment can only be accessed by one
environment handle. The environment cannot be accessed by multiple processes.
This is true even if one of those processes is one of the the Berkeley DB utilities.
(For example, db_archive, db_checkpoint or db_stat.) Nor can a single process open
multiple handles to the environment.

This flag has two effects on the Berkeley DB environment. First, all underlying data
structures are allocated from per-process memory instead of from shared memory that
is accessible to more than a single process. Second, mutexes are only configured to work
between threads.

See Shared Memory Regions for more information.

You can also specify this flag in the DB_CONFIG configuration file. The syntax is a single
line with the string "set_open_flags", one or more whitespace characters, the string
"DB_PRIVATE", optionally one or more whitespace characters and the string "on" or "off". If
the optional string is omitted, the default is "on"; for example, "set_open_flags DB_PRIVATE"
or "set_open_flags DB_PRIVATE on". Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

2/17/2015

DB C API Page 259


../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/env_region.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

e DB_REGISTER

Check to see if recovery needs to be performed before opening the database environment.
(For this check to be accurate, all processes using the environment must specify
DB_REGISTER when opening the environment.) If recovery needs to be performed for any
reason (including the initial use of the DB_REGISTER flag), and DB_RECOVER is also specified,
recovery will be performed and the open will proceed normally. If recovery needs to be
performed and DB_RECOVER is not specified, DB_RUNRECOVERY will be returned. If recovery
does not need to be performed, the DB_RECOVER flag will be ignored. See Architecting
Transactional Data Store applications for more information.

« DB_SYSTEM_MEM

Allocate region memory from system shared memory instead of from heap memory or
memory backed by the filesystem.

See Shared Memory Regions for more information.
e DB_THREAD

Cause the DB_ENV handle returned by DB_ENV->open() to be free-threaded; that is,
concurrently usable by multiple threads in the address space. The DB_THREAD flag should
be specified if the DB_ENV handle will be concurrently used by more than one thread in the
process, or if any DB handles opened in the scope of the DB_ENV handle will be concurrently
used by more than one thread in the process.

If this flag is specified, then any database opened using this environment handle will also be
free-threaded.

Be aware that enabling this flag will serialize calls to DB when using the handle across
threads. If concurrent scaling is important to your application we recommend opening
separate handles for each thread (and not specifying this flag), rather than sharing handles
between threads.

This flag is required when using the Replication Manager.

You can also specify this flag in the DB_CONFIG configuration file. The syntax is a single

line with the string "set_open_flags”, one or more whitespace characters, the string
"DB_THREAD", optionally one or more whitespace characters and the string "on" or "off". If
the optional string is omitted, the default is "on"; for example, "set_open_flags DB_THREAD"
or "set_open_flags DB_THREAD on". Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

mode
On Windows systems, the mode parameter is ignored.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, files created by Berkeley
DB are created with mode mode (as described in chmod(2)) and modified by the process’
umask value at the time of creation (see umask(2)). Created files are owned by the process
owner; the group ownership of created files is based on the system and directory defaults,

2/17/2015

DB C API Page 260


../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/transapp_app.html
../../programmer_reference/transapp_app.html
../../programmer_reference/env_region.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

and is not further specified by Berkeley DB. System shared memory segments created by
Berkeley DB are created with mode mode, unmodified by the process’' umask value. If mode is
0, Berkeley DB will use a default mode of readable and writable by both owner and group.

Errors

The DB_ENV->open() method may fail and return one of the following non-zero errors:
DB_RUNRECOVERY

Either the DB_REGISTER flag was specified, a failure occurred, and no recovery flag was
specified, or the DB_FAILCHK flag was specified and recovery was deemed necessary.

DB_VERSION_MISMATCH

The version of the Berkeley DB library doesn't match the version that created the database
environment.

EAGAIN
The shared memory region was locked and (repeatedly) unavailable.
EINVAL

If the DB_THREAD flag was specified and fast mutexes are not available for this architecture;
The DB_HOME or TMPDIR environment variables were set, but empty; An incorrectly formatted
NAME VALUE entry or line was found; or if an invalid flag value or parameter was specified.

ENOENT

The file or directory does not exist.

Class

DB_ENV

See Also

Database Environments and Related Methods (page 204)

2/17/2015

DB C API Page 261



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->remove()

#tinclude <db.h>

int
DB_ENV->remove(DB_ENV *dbenv, char *db_home, u_int32_t flags);

The DB_ENV->remove() method destroys a Berkeley DB environment if it is not currently in
use. The environment regions, including any backing files, are removed. Any log or database
files and the environment directory are not removed.

If there are processes that have called DB_ENV->open() (page 256) without calling DB_ENV-
>close() (page 211) (that is, there are processes currently using the environment), DB_ENV-
>remove () will fail without further action unless the DB_FORCE flag is set, in which case
DB_ENV->remove() will attempt to remove the environment, regardless of any processes still
using it.

The result of attempting to forcibly destroy the environment when it is in use is unspecified.
Processes using an environment often maintain open file descriptors for shared regions within
it. On UNIX systems, the environment removal will usually succeed, and processes that

have already joined the region will continue to run in that region without change. However,
processes attempting to join the environment will either fail or create new regions. On other
systems in which the unlink(2) system call will fail if any process has an open file descriptor
for the file (for example Windows/NT), the region removal will fail.

Calling DB_ENV->remove() should not be necessary for most applications because the
Berkeley DB environment is cleaned up as part of normal database recovery procedures.
However, applications may want to call DB_ENV->remove() as part of application shut down
to free up system resources. For example, if the DB_SYSTEM_MEM flag was specified to
DB_ENV->open() (page 256), it may be useful to call DB_ENV->remove() in order to release
system shared memory segments that have been allocated. Or, on architectures in which
mutexes require allocation of underlying system resources, it may be useful to call DB_ENV-
>remove() in order to release those resources. Alternatively, if recovery is not required
because no database state is maintained across failures, and no system resources need to be
released, it is possible to clean up an environment by simply removing all the Berkeley DB files
in the database environment's directories.

In multithreaded applications, only a single thread may call the DB_ENV->remove() method.
A DB_ENV handle that has already been used to open an environment should not be used
to call the DB_ENV->remove() method; a new DB_ENV handle should be created for that

purpose.

After DB_ENV->remove() has been called, regardless of its return, the Berkeley DB
environment handle may not be accessed again.

The DB_ENV->remove() method returns a non-zero error value on failure and 0 on success.

2/17/2015 DB C API Page 262



Library Version 12.1.6.1 The DB_ENV Handle

Parameters
db_home
The db_home parameter names the database environment to be removed.

When using a Unicode build on Windows (the default), the db_home argument will be
interpreted as a UTF-8 string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of
the following values:

+ DB_FORCE

If set, the environment is removed, regardless of any processes that may still using it,
and no locks are acquired during this process. (Generally, this flag is specified only when
applications were unable to shut down cleanly, and there is a risk that an application may
have died holding a Berkeley DB lock.)

« DB_USE_ENVIRON

The Berkeley DB process’ environment may be permitted to specify information to be used
when naming files; see Berkeley DB File Naming. Because permitting users to specify which
files are used can create security problems, environment information will be used in file
naming for all users only if the DB_USE_ENVIRON flag is set.

« DB_USE_ENVIRON_ROOT

The Berkeley DB process' environment may be permitted to specify information to be
used when naming files; see Berkeley DB File Naming. Because permitting users to specify
which files are used can create security problems, if the DB_USE_ENVIRON_ROOT flag is
set, environment information will be used in file naming only for users with appropriate
permissions (for example, users with a user-ID of 0 on UNIX systems).

Errors
The DB_ENV->remove () method may fail and return one of the following non-zero errors:
EBUSY
The shared memory region was in use and the force flag was not set.
Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 263


../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html

Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_alloc()

#include <db.h>

int

DB_ENV->set_alloc(DB_ENV *dbenv,
void *(*app_malloc)(size_t),
void *(*app_realloc)(void *, size t),
void (*app_free)(void *));

Set the allocation functions used by the DB_ENV and DB methods to allocate or free memory
owned by the application.

There are a number of interfaces in Berkeley DB where memory is allocated by the library
and then given to the application. For example, the DB_DBT_MALLOC flag, when specified
in the DBT object, will cause the DB methods to allocate and reallocate memory which
then becomes the responsibility of the calling application. Other examples are the Berkeley
DB interfaces which return statistical information to the application: DB->stat() (page

141), DB_ENV->lock_stat() (page 364), DB_ENV->log_archive() (page 383), DB_ENV-
>log_stat() (page 398), DB_ENV->memp_stat() (page 432), and DB_ENV->txn_stat() (page
633). There is one method in Berkeley DB where memory is allocated by the application and
then given to the library: the callback specified to DB->associate() (page 6).

On systems in which there may be multiple library versions of the standard allocation routines
(notably Windows NT), transferring memory between the library and the application will fail
because the Berkeley DB library allocates memory from a different heap than the application
uses to free it. To avoid this problem, the DB_ENV->set_alloc() and DB->set_alloc() (page
83) methods can be used to pass Berkeley DB references to the application’s allocation
routines.

It is not an error to specify only one or two of the possible allocation function parameters to
these interfaces; however, in that case the specified interfaces must be compatible with the
standard library interfaces, as they will be used together. The functions specified must match
the calling conventions of the ANSI C X3.159-1989 (ANSI C) library routines of the same name.

The DB_ENV->set_alloc() method configures operations performed using the specified
DB_ENV handle, not all operations performed on the underlying database environment.

The DB_ENV->set_alloc() method may not be called after the DB_ENV->open() (page 256)
method is called.

The DB_ENV->set_alloc() method returns a non-zero error value on failure and 0 on success.

Parameters

app_malloc
The app_malloc parameter is the application-specified malloc function.
app_realloc

The app_realloc parameter is the application-specified realloc function.

2/17/2015

DB C API Page 264



Library Version 12.1.6.1 The DB_ENV Handle

app_free
The app_free parameter is the application-specified free function.
Errors
The DB_ENV->set_alloc() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB_ENV->open() (page 256) was called; or if an invalid flag
value or parameter was specified.

Class

DB_ENV

See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 265



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_app_dispatch()

#tinclude <db.h>

int
DB_ENV->set_app_dispatch(DB_ENV *dbenv,
int (*tx_recover)(DB_ENV *dbenv,
DBT *log_rec, DB_LSN *1sn, db_recops op));

Declare a function to be called during transaction abort and recovery to process application-
specific log records.

The DB_ENV->set_app_dispatch() method configures operations performed using
the specified DB_ENV handle, not all operations performed on the underlying database
environment.

The DB_ENV->set_app_dispatch() method may not be called after the DB_ENV-

>open() (page 256) method is called. If the database environment already exists

when DB_ENV->open() (page 256) is called, the information specified to DB_ENV-
>set_app_dispatch() must be consistent with the existing environment or corruption can
occur.

The DB_ENV->set_app_dispatch() method returns a non-zero error value on failure and 0 on
success.

Parameters
tx_recover

The tx_recover parameter is the application's abort and recovery function. The function takes
four parameters:

¢ dbenv
The dbenv parameter is the enclosing database environment handle.
e log rec
The log_rec parameter is a log record.
e 1sn
The Isn parameter is a log sequence number.
e op
The op parameter is one of the following values:
o DB_TXN_BACKWARD_ ROLL

The log is being read backward to determine which transactions have been committed
and to abort those operations that were not; undo the operation described by the log
record.

2/17/2015 DB C API Page 266



Library Version 12.1.6.1 The DB_ENV Handle

« DB_TXN_FORWARD_ROLL
The log is being played forward; redo the operation described by the log record.
o DB_TXN_ABORT

The log is being read backward during a transaction abort; undo the operation described
by the log record.

o DB_TXN_APPLY
The log is being applied on a replica site; redo the operation described by the log record.
o DB_TXN_PRINT

The log is being printed for debugging purposes; print the contents of this log record in
the desired format.

The DB_TXN_FORWARD_ROLL and DB_TXN_APPLY operations frequently imply the same
actions, redoing changes that appear in the log record, although if a recovery function

is to be used on a replication client where reads may be taking place concurrently with

the processing of incoming messages, DB_TXN_APPLY operations should also perform
appropriate locking. The macro DB_REDO(op) checks that the operation is one of
DB_TXN_FORWARD_ROLL or DB_TXN_APPLY, and should be used in the recovery code to
refer to the conditions under which operations should be redone. Similarly, the macro
DB_UNDO(op) checks if the operation is one of DB_TXN_BACKWARD_ROLL or DB_TXN_ABORT.

The function must return 0 on success and either errno or a value outside of the Berkeley DB
error name space on failure.

Errors

The DB_ENV->set_app_dispatch() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called after DB_ENV->open() (page 256) was called; or if an invalid flag
value or parameter was specified.

Class
DB_ENV, DB_TXN
See Also

Transaction Subsystem and Related Methods (page 617)

2/17/2015 DB C API Page 267



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_backup_callbacks()

#tinclude <db.h>

DB_ENV->set_backup_callbacks(DB_ENV,
int (*open_func)(DB_ENV *, const char *dbname,
const char *target, void **handle),
int (*write_func)(DB_ENV *, u_int32_t offset_gbytes,
u_int32_t offset_bytes, u_int32_t size,
u_int8_t *buf, void *handle),
int (*close_func)(DB_ENV *, const char *dbname, void *handle));

The DB_ENV->set_backup_callbacks() method configures three callback functions which
can be used by the DB_ENV->backup() (page 208) or DB_ENV->dbbackup() (page 214) methods
to override their default behavior. If one callback is configured, then all three callbacks must
be configured. These callbacks are required if the target parameter is set to NULL for the
DB_ENV->backup() (page 208) or DB_ENV->dbbackup() (page 214) methods.

The DB_ENV->set_backup_callbacks() method configures operations performed using
the specified DB_ENV handle, not all operations performed on the underlying database
environment.

The DB_ENV->set_backup_callbacks() method may be called at any time during the life of
the application.

The DB_ENV->set_backup_callbacks() method returns a non-zero error value on failure and
0 on success.

Parameters

open_func

The open_func parameter is the function used when a target location is opened during a
backup. This function should do whatever is necessary to prepare the backup destination for
writing the data.

This function takes four parameters:
» dbenv

The dbenv parameter is the enclosing database environment handle.
« dbname

The dbname parameter is the name of the database being backed up.
e target

The target parameter is the backup's directory destination.

e handle

2/17/2015

DB C API Page 268



Library Version 12.1.6.1 The DB_ENV Handle

The handle parameter references the handle (usually a file handle) to which the backup will
be written.

write_func

The write_func parameter is the function used to write data during a backup. The function
takes six parameters:

e dbenv
The dbenv parameter is the enclosing database environment handle.
o offset_gbytes

The offset_gbytes parameter specifies the number of gigabytes into the output
handle where the data can should be written. This value, plus the value specified on
offset_bytes, indicates the offset within the output handle where the backup should
begin.

o offset_bytes

The offset_bytes parameter specifies the number of bytes into the output handle where the
data can be located. This value, plus the value specified on offset_gbytes, indicates the
offset within the output handle where the backup should begin.

e size

The size parameter specifies the number of bytes to back up from the buffer.
e buf

The buf parameter is the buffer which contains the data to be backed up.
e handle

The handle parameter references the handle (usually a file handle) to which the backup will
be written.

close_func

The close_func parameter is the function used when ending a backup and closing a backup
target. The function takes three parameters:

» dbenv
The dbenv parameter is the enclosing database environment handle.
e dbname
The dbname parameter is the name of the database that has now been backed up.

e handle

2/17/2015

DB C API Page 269



Library Version 12.1.6.1 The DB_ENV Handle

The handle parameter references the handle (usually a file handle) to which the backup
was written, and which now must be closed or otherwise discarded.

Class
DB_ENV
See Also
Database Environments and Related Methods (page 204), DB_ENV-

>get_backup_callbacks() (page 234), DB_ENV->backup() (page 208), and DB_ENV-
>dbbackup() (page 214).

2/17/2015 DB C API Page 270



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_backup_config()

#tinclude <db.h>

DB_ENV->set_backup_config(DB_ENV, DB_BACKUP_CONFIG option,
u_int32_t value);

The DB_ENV->set_backup_config() method configures tuning parameters for the hot backup
APIs. See the DB_ENV->backup() (page 208) and DB_ENV->dbbackup() (page 214) methods for a
description of the hot backup APIs.

The DB_ENV->set_backup_config() method configures operations performed using
the specified DB_ENV handle, not all operations performed on the underlying database
environment.

The DB_ENV->set_backup_config() method may be called at any time during the life of the
application.

The DB_ENV->set_backup_config() method returns a non-zero error value on failure and 0
on success.

Parameters

option

The option parameter identifies the backup parameter to be modified. It must be one of the
following:

+ DB_BACKUP_WRITE_DIRECT

Turning this on causes direct I/0 to be used when writing pages to the disk. For some
environments, direct |/0 can provide faster write throughput, but usually it is slower
because the OS buffer pool offers asynchronous activity.

By default, this option is turned off.
« DB_BACKUP_READ COUNT

Configures the number of pages to read before pausing. Increasing this value increases the
amount of 1/0 the backup process performs for any given time interval. If your application
is already heavily I/0 bound, setting this value to a lower number may help to improve your
overall data throughput by reducing the I/0 demands placed on your system.

By default, all pages are read without a pause.
» DB_BACKUP_READ_SLEEP

Configures the number of microseconds to sleep between batches of reads. Increasing this
value decreases the amount of 1/0 the backup process performs for any given time interval.
If your application is already heavily 1/0 bound, setting this value to a higher number may
help to improve your overall data throughput by reducing the I/0 demands placed on your
system.

2/17/2015

DB C API Page 271



Library Version 12.1.6.1 The DB_ENV Handle

« DB_BACKUP_SIZE

Configures the size of the buffer, in bytes, to read from the database. Default is 1
megabyte.

value

The value parameter sets the configuration value for the option identified by the option
parameter. For those options which can only be turned on or off, this parameter should be set
to o for off and 1 for on. Otherwise, set this parameter to an integer value that represents the
number of units for which you are configuring the backup APlIs.

Class
DB_ENV,
See Also

Database Environments and Related Methods (page 204), DB_ENV->get_backup_config() (page
235), DB_ENV->backup() (page 208), DB_ENV->dbbackup() (page 214)

2/17/2015 DB C API Page 272



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_data_dir()

#tinclude <db.h>

int
DB_ENV->set_data_dir(DB_ENV *dbenv, const char *dir);

Note

This interface has been deprecated. You should use DB_ENV->add_data_dir() (page
206) and DB_ENV->set_create_dir() (page 276) instead.

Set the path of a directory to be used as the location of the access method database files.
Paths specified to the DB->open() (page 70) function will be searched relative to this path.
Paths set using this method are additive, and specifying more than one will result in each
specified directory being searched for database files. If any directories are specified, database
files will always be created in the first path specified.

If no database directories are specified, database files must be named either by absolute
paths or relative to the environment home directory. See Berkeley DB File Naming for more
information.

The database environment’s data directories may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_data_dir", one or more whitespace characters, and the directory name. Note that if you
use this method for your application, and you also want to use the db_recover (page 697)

or db_archive (page 674) utilities, then you should create a DB_CONFIG file and set the
"set_data_dir" parameter in it.

The DB_ENV->set_data_dir() method configures operations performed using the specified
DB_ENV handle, not all operations performed on the underlying database environment.

The DB_ENV->set_data_dir() method may not be called after the DB_ENV->open() (page
256) method is called. If the database environment already exists when DB_ENV->open() (page
256) is called, the information specified to DB_ENV->set_data_dir() must be consistent with
the existing environment or corruption can occur.

The DB_ENV->set_data_dir() method returns a non-zero error value on failure and 0 on
success.

Parameters

dir

The dir parameter is a directory to be used as a location for database files. This directory
must currently exist at environment open time.

When using a Unicode build on Windows (the default), this argument will be interpreted as a
UTF-8 string, which is equivalent to ASCII for Latin characters.

2/17/2015

DB C API Page 273


../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

Errors

The DB_ENV->set_data_dir() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called after DB_ENV->open() (page 256) was called; or if an invalid flag
value or parameter was specified.

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 274



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_data_len()
#include <db.h>
int
DB_ENV->set_data_len(DB_ENV *dbenv, u_int32_t bytes);

Limits the amount of data displayed when DB_ENV->lock_stat_print() (page 370) is called
with the DB_STAT_ALL or DB_STAT_LOCK_OBIJECTS flag.

This method is explicitly called in the db_printlog (page 695) and db_dump (page 680)
utilities when using the -D command line option. When used in this manner it will set the
maximum number of bytes to display for each key/data item. These utilities run in their own
environment context.

If you want to call this method from the primary application and have it set the maximum
number of bytes to display for each key/data item, then you must bring the db_dump/
db_printlog code into the primary application and ensure that the same environment handle is
used throughout.

This limit may also be configured using the environment's DB_CONFIG file. In this case, the
limit will equally affect your application code, as well as the command line utilities noted
above without modification to their code. The syntax of the entry in that file is a single line
with the string "set_data_len", one or more whitespace characters, and the limit in bytes that
you want to set.

The DB_ENV->set_data_len() method configures operations performed using the specified
DB_ENV handle, not all operations performed on the underlying database environment.

The DB_ENV->set_data_len() method may be called at any time during the life of the
application.

The DB_ENV->set_data_len() method returns a non-zero error value on failure and 0 on
success.

Parameters

bytes

The bytes parameter identifies the maximum number of bytes to display when dumping the
database or printing the log. The value specified here must be greater than o.

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 275


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_create_dir()

#tinclude <db.h>

int
DB_ENV->set_create_dir(DB_ENV *dbenv, const char *dir);

Sets the path of a directory to be used as the location to create the access method database
files. When the DB->open() (page 70) function is used to create a file it will be created
relative to this path.

If no database directories are specified, database files will be created either by absolute
paths or relative to the environment home directory. See Berkeley DB File Naming for more
information.

The database environment's create directory may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_create_dir", one or more whitespace characters, and the directory name.

The DB_ENV->set_create_dir() method configures operations performed using the specified
DB_ENV handle, not all operations performed on the underlying database environment.

The DB_ENV->set create_dir() method may be called at any time.

The DB_ENV->set_create_dir() method returns a non-zero error value on failure and 0 on
success.

Parameters
dir

The dir parameter is a directory to be used to create database files. This directory must be
one of the directories specified via a call to DB_ENV->add_data_dir() (page 206)

When using a Unicode build on Windows (the default), this argument will be interpreted as a
UTF-8 string, which is equivalent to ASCII for Latin characters.

Errors

The DB_ENV->set_create_dir() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called after DB_ENV->open() (page 256) was called; or if an invalid flag
value or parameter was specified.

Class

DB_ENV

2/17/2015 DB C API Page 276


../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 277



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_encrypt()

#include <db.h>

int
DB_ENV->set_encrypt(DB_ENV *dbenv, const char *passwd, u_int32 t flags);

Set the password used by the Berkeley DB library to perform encryption and decryption.

The DB_ENV->set_encrypt() method configures a database environment, not only operations
performed using the specified DB_ENV handle.

The DB_ENV->set_encrypt() method may not be called after the DB_ENV->open() (page 256)
method is called. If the database environment already exists when DB_ENV->open() (page 256)
is called, the information specified to DB_ENV->set_encrypt() must be consistent with the
existing environment or an error will be returned.

The DB_ENV->set_encrypt() method returns a non-zero error value on failure and 0 on
success.

Parameters
passwd
The passwd parameter is the password used to perform encryption and decryption.
flags
The flags parameter must be set to 0 or the following value:
« DB_ENCRYPT_AES

Use the Rijndael/AES (also known as the Advanced Encryption Standard and Federal
Information Processing Standard (FIPS) 197) algorithm for encryption or decryption.

Errors

The DB_ENV->set_encrypt() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called after DB_ENV->open() (page 256) was called; or if an invalid flag
value or parameter was specified.

EOPNOTSUPP
Cryptography is not available in this Berkeley DB release.
Class

DB_ENV

2/17/2015 DB C API Page 278



Library Version 12.1.6.1 The DB_ENV Handle

See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 279



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_event_notify()

#tinclude <db.h>

int

DB_ENV->set_event_notify(DB_ENV *dbenv,
void (*db_event_ fcn)(DB_ENV *dbenv, u_int32_t event,
void *event_info));

The DB_ENV->set_event _notify() method configures a callback function which is called to
notify the process of specific Berkeley DB events.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

The DB_ENV->set_event_notify() method configures operations performed using
the specified DB_ENV handle, not all operations performed on the underlying database
environment.

The DB_ENV->set_event_notify() method may be called at any time during the life of the
application.

The DB_ENV->set_event_notify() method returns a non-zero error value on failure and 0 on
success.

Parameters

db_event_fcn

The db_event_fcn parameter is the application’'s event notification function. The function
takes three parameters:

¢ dbenv

The dbenv parameter is the enclosing database environment handle.
e event

The event parameter is one of the following values:

e DB_EVENT_FAILCHK_PANIC

The thread is about to return a DB_RUNRECOVERY error because a prior panic event has
occurred and the thread has been marked by DB_ENV->failchk() (page 222) as being held
by a crashed process.

The event_info parameter is a pointer to a DB_FAILCHK_PANIC_INFO structure, which
contains these fields:
int error;

2/17/2015

DB C API Page 280


../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY

Library Version 12.1.6.1

The DB_ENV Handle

char symptom[DB_FAILURE_SYMPTOM_SIZE];

When this event is seen, the database environment has failed. All threads of control in
the database environment should exit, and recovery should be run.

This event is generated only when failchk broadcasting is configured. You configured
broadcasting by specifying - -enable-failchk_broadcast when you compile your
Berkeley DB library.

DB_EVENT_MUTEX_DIED

The thread is about to return a DB_RUNRECOVERY error because a mutex it requires has
been marked by DB_ENV->failchk() (page 222) as being held by a crashed process.

The event_info parameter is a pointer to a DB_MUTEX_DIED_INFO structure, which
contains these fields:

pid_t mtxdied_pid;
db_threadid_t mtxdied_tid;
db_mutex_t mtxdied_mtx;
char mtxdied_desc[DB_MUTEX_DESCRIBE_STRLEN];

When this event is seen, the database environment has failed. All threads of control in
the database environment should exit, and recovery should be run.

This event is generated only when failchk broadcasting is configured. You configured
broadcasting by specifying - -enable-failchk_broadcast when you compile your
Berkeley DB library.

DB_EVENT_PANIC

Errors can occur in the Berkeley DB library where the only solution is to shut down the
application and run recovery (for example, if Berkeley DB is unable to allocate heap
memory). In such cases, the Berkeley DB methods will return DB_RUNRECOVERY. It is
often easier to simply exit the application when such errors occur rather than gracefully
return up the stack.

When event is set to DB_EVENT_PANIC, the database environment has failed. All threads
of control in the database environment should exit the environment, and recovery should
be run.

DB_EVENT_REG_ALIVE
Recovery is needed in an environment where the DB_REGISTER flag was specified on the
DB_ENV->open() (page 256) method and there is a process attached to the environment.

The callback function is triggered once for each process attached.

The event_info parameter points to a pid_t value containing the process identifier (pid)
of the process the Berkeley DB library detects is attached to the environment.

« DB_EVENT_REG_PANIC

2/17/2015

DB C API Page 281


../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY

Library Version 12.1.6.1

The DB_ENV Handle

Recovery is needed in an environment where the DB_REGISTER flag was specified on the
DB_ENV->open() (page 256) method. All threads of control in the database environment
should exit the environment.

This event is different than the DB_EVENT_PANIC event because it can only be triggered
when DB_REGISTER was specified. It can be used to distinguish between the case when a
process dies in the environment and recovery is initiated versus the case when an error
happened (for example, if Berkeley DB is unable to allocate heap memory)

DB_EVENT_REP_AUTOTAKEOVER_FAILED

The current subordinate process attempted to take over as the replication process, but
the attempt failed.

The replication process is the main Replication Manager process which is responsible
for sending and processing most Replication Manager messages. Normally this is the
first process started in a replication group, but when that process shuts down cleanly, a
subordinate process will take over if one is available.

This event means that this Replication Manager subordinate process attempted to take
over as the replication process, but it failed. Replication Manager is not running locally
but may be restarted by invoking DB_ENV->repmgr_start() (page 582).

The DB_EVENT_REP_AUTOTAKEOVER_FAILED event is provided only to applications
configured for the Replication Manager.

DB_EVENT_REP_CLIENT
The local site is now a replication client.

This event is generated when the replication role changes to client, either from master
or from being unset. The role is unset when an environment is first created and after an
environment is recovered. This event is not generated when restarting replication in an
environment that was previously a client and was opened without recovery.

DB_EVENT_REP_CONNECT_BROKEN

A previously established Replication Manager message connection between the local site
and a remote site has been broken. This event supplies the EID of the remote site, and an
integer error code that identifies the reason the connection was broken.

A non-zero error code indicates an unexpected condition such as a hardware failure or
a protocol error. An application might respond by emitting an informational message or
passing this information to other parts of the application using the app_private field.
A zero error code indicates that the connection was cleanly closed by the other end.
Replication Manager retries broken connections periodically until they are restored.

The DB_EVENT_REP_CONNECT_BROKEN event is provided only to applications configured for
the Replication Manager.

2/17/2015

DB C API Page 282



Library Version 12.1.6.1

The DB_ENV Handle

« DB_EVENT_REP_CONNECT_ESTD

A Replication Manager message connection has been established between the local site
and a remote site. This event supplied the EID of the remote site.

The DB_EVENT_REP_CONNECT_ESTD event is provided only to applications configured for
the Replication Manager.

DB_EVENT_REP_CONNECT_TRY_FAILED

A Replication Manager attempt to establish a connection between the local site and a
remote site has failed. This event supplies the EID of the remote site, and an integer
error code that identifies the reason the connection attempt failed.

The DB_EVENT_REP_CONNECT_TRY_FAILED event is provided only to applications
configured for the Replication Manager.

DB_EVENT_REP_DUPMASTER

Replication Manager has detected a duplicate master situation, and has changed the
local site to the client role as a result. If the DB_REPMGR_CONF_ELECTIONS (page
536) configuration parameter has been turned off, the application should now choose
and assign the correct master site. If DB_REPMGR_CONF_ELECTIONS is turned on, the
application may ignore this event.

The DB_EVENT_REP_DUPMASTER event is provided only to applications configured for the
Replication Manager.

DB_EVENT_REP_ELECTED
The local replication site has just won an election. A Base API application should call the
DB_ENV->rep_start() (page 555) method after receiving this event, to reconfigure the
local environment as a replication master.

Replication Manager applications may safely ignore this event. The Replication Manager
calls DB_ENV->rep_start() (page 555) automatically on behalf of the application when
appropriate (resulting in firing of the DB_EVENT_REP_MASTER event).
DB_EVENT_REP_ELECTION_FAILED

Replication Manager tried to run an election to choose a master site, but the election
failed due to lack of timely participation by a sufficient number of other sites. Replication

Manager will automatically retry the election later. This event is for information only.

The DB_EVENT_REP_ELECTION_FAILED event is provided only to applications configured
for the Replication Manager.

DB_EVENT_REP_INIT DONE

The local client site has completed an internal initialization procedure.

2/17/2015

DB C API Page 283



Library Version 12.1.6.1

The DB_ENV Handle

DB_EVENT_REP_INQUEUE_FULL

Incoming messages will be dropped because the Replication Mananger incoming queue has
reached its maximum threshold.

DB_EVENT_REP_JOIN_FAILURE
The local client site is unable to synchronize with a new master, possibly
because the client has turned off automatic internal initialization by setting the
DB_REP_CONF_AUTOINIT flag to e.

DB_EVENT_REP_LOCAL_SITE_REMOVED

The local site has been removed from the replication group.

The DB_EVENT_REP_LOCAL_SITE_REMOVED event is provided only to applications
configured for the Replication Manager.

DB_EVENT_REP_MASTER

The local site is now the master site of its replication group. It is the application’s
responsibility to begin acting as the master environment.

This event is generated when the replication role changes to master, either from client

or from being unset. The role is unset when an environment is first created and after an
environment is recovered. This event is not generated when restarting replication in an
environment that was previously a master and was opened without recovery.

DB_EVENT_REP_MASTER_FAILURE

A Replication Manager client site has detected the loss of connection to the master site.
If the DB_REPMGR_CONF_ELECTIONS (page 536) configuration parameter is turned on,
Replication Manager will automatically start an election in order to choose a new master.
In this case, this event may be ignored.

When DB_REPMGR_CONF_ELECTIONS is turned off, the application should choose and assign
a new master. Failure to do so means that your replication group has no master, and so it
cannot service write requests.

The DB_EVENT_REP_MASTER_FAILURE event is provided only to applications configured for
the Replication Manager.

DB_EVENT_REP_NEWMASTER
The replication group of which this site is a member has just established a new master;
the local site is not the new master. The event_info parameter points to an integer

containing the environment ID of the new master.

DB_EVENT_REP_PERM_FAILED

2/17/2015

DB C API Page 284



Library Version 12.1.6.1 The DB_ENV Handle

The Replication Manager did not receive enough acknowledgements (based on the
acknowledgement policy configured with DB_ENV->repmgr_set_ack_policy() (page 573)

) to ensure a transaction's durability within the replication group. The transaction will be
flushed to the master's local disk storage for durability.

The DB_EVENT_REP_PERM_FAILED event is provided only to applications configured for
the Replication Manager.

« DB_EVENT_REP_SITE_ADDED

A new site has joined the replication group. The event_info parameter points to an
integer containing the environment ID of the new site.

The DB_EVENT_REP_SITE_ADDED event is provided only to applications configured for the
Replication Manager.

« DB_EVENT_REP_SITE_REMOVED

An existing remote site has been removed from the replication group. The event_info
parameter points to an integer containing the environment ID of the site that was
removed.

The DB_EVENT_REP_SITE_REOMVED event is provided only to applications configured for
the Replication Manager.

e DB_EVENT_REP_STARTUPDONE

The replication client has completed startup synchronization and is now processing live
log records received from the master.

o DB_EVENT_WRITE_FAILED
A Berkeley DB write to stable storage failed.
e event_info

The event_info parameter may reference memory which contains additional information
describing an event. By default, event_info is NULL; specific events may pass non-NULL
values, in which case the event will also describe the memory's structure.
Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 285



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_errcall()

#tinclude <db.h>

void
DB_ENV->set_errcall(DB_ENV *dbenv, void (*db_errcall_fcn)
(const DB_ENV *dbenv, const char *errpfx, const char *msg));

When an error occurs in the Berkeley DB library, a Berkeley DB error or an error return value
is returned by the interface. In some cases, however, the errno value may be insufficient to
completely describe the cause of the error, especially during initial application debugging.

The DB_ENV->set_errcall() and DB_ENV->set_errcall() (page 286) methods are used to
enhance the mechanism for reporting error messages to the application. In some cases, when
an error occurs, Berkeley DB will call db_errcall_fcn with additional error information. It is up
to the db_errcall_fcn function to display the error message in an appropriate manner.

Setting db_errcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DB->set_errfile() (page 103) or DB->set_errfile() (page 288)
methods to display the additional information via a C library FILE *.

This error-logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application
debugging.

The DB_ENV->set_errcall() method configures operations performed using the specified
DB_ENV handle, not all operations performed on the underlying database environment.

The DB_ENV->set_errcall() method may be called at any time during the life of the
application.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

Parameters

db_errcall_fcn

The db_errcall_fcn parameter is the application-specified error reporting function. The
function takes three parameters:

e dbenv
The dbenv parameter is the enclosing database environment.

e errpfx

2/17/2015

DB C API Page 286



Library Version 12.1.6.1 The DB_ENV Handle

The errpfx parameter is the prefix string (as previously set by DB->set_errpfx() (page 105)
or DB_ENV->set_errpfx() (page 290)).

o msg
The msg parameter is the error message string.
Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 287



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_errfile()

#tinclude <db.h>

void
DB_ENV->set_errfile(DB_ENV *dbenv, FILE *errfile);

When an error occurs in the Berkeley DB library, a Berkeley DB error or an error return value
is returned by the interface. In some cases, however, the return value may be insufficient to
completely describe the cause of the error especially during initial application debugging.

The DB_ENV->set_errfile() and DB->set_errfile() (page 103) methods are used to enhance
the mechanism for reporting error messages to the application by setting a C library FILE * to
be used for displaying additional Berkeley DB error messages. In some cases, when an error
occurs, Berkeley DB will output an additional error message to the specified file reference.

Alternatively, you can use the DB_ENV->set_errcall() (page 286) or DB->set_errcall() (page
101) methods to capture the additional error information in a way that does not use C library
FILE *'s.

The error message will consist of the prefix string and a colon (":") (if a prefix string was
previously specified using DB->set_errpfx() (page 105) or DB_ENV->set_errpfx() (page 290) ),
an error string, and a trailing <newline> character.

The default configuration when applications first create DB or DB_ENV handles is as if the
DB->set_errfile() (page 103) or DB_ENV->set_errfile() methods were called with the
standard error output (stderr) specified as the FILE * argument. Applications wanting no
output at all can turn off this default configuration by calling the DB->set_errfile() (page
103) or DB_ENV->set_errfile() methods with NULL as the FILE * argument. Additionally,
explicitly configuring the error output channel using any of the following methods will also
turn off this default output for the application:

e DB_ENV->set_errfile()

» DB->set_errfile() (page 103)

o DB_ENV->set_errcall() (page 286)

o DB->set_errcall() (page 101)

This error logging enhancement does not slow performance or significantly increase
application size, and may be run during normal operation as well as during application

debugging.

The DB_ENV->set_errfile() method configures operations performed using the specified
DB_ENV handle, not all operations performed on the underlying database environment.

The DB_ENV->set_errfile() method may be called at any time during the life of the
application.

2/17/2015 DB C API Page 288



Library Version 12.1.6.1 The DB_ENV Handle

Parameters
errfile

The errfile parameter is a C library FILE * to be used for displaying additional Berkeley DB
error information.

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 289



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_errpfx()

#tinclude <db.h>

void
DB_ENV->set_errpfx(DB_ENV *dbenv, const char *errpfx);

Set the prefix string that appears before error messages issued by Berkeley DB.

The DB->set_errpfx() (page 105) and DB_ENV->set_errpfx() methods do not copy the
memory to which the errpfx parameter refers; rather, they maintain a reference to it.
Although this allows applications to modify the error message prefix at any time (without
repeatedly calling the interfaces), it means the memory must be maintained until the handle
is closed.

The DB_ENV->set_errpfx() method configures operations performed using the specified
DB_ENV handle, not all operations performed on the underlying database environment.

The DB_ENV->set_errpfx() method may be called at any time during the life of the
application.

Parameters

errpfx

The errpfx parameter is the application-specified error prefix for additional error messages.
Class

DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 290



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_feedback()

#tinclude <db.h>

int
DB_ENV->set_feedback(DB_ENV *dbenv,
void (*db_feedback_fcn)(DB_ENV *dbenv, int opcode, int percent));

Some operations performed by the Berkeley DB library can take non-trivial amounts of time.
The DB_ENV->set_feedback() method can be used by applications to monitor progress within
these operations. When an operation is likely to take a long time, Berkeley DB will call the
specified callback function with progress information.

Note

Berkeley DB is not re-entrant. Callback functions should not attempt to make library
calls (for example, to release locks or close open handles). Re-entering Berkeley DB is
not guaranteed to work correctly, and the results are undefined.

It is up to the callback function to display this information in an appropriate manner.

The DB_ENV->set_feedback() method configures operations performed using the specified
DB_ENV handle.

The DB_ENV->set_feedback() method may be called at any time during the life of the
application.

The DB_ENV->set_feedback() method returns a non-zero error value on failure and 0 on
success.

Parameters

db_feedback_fcn

The db_feedback_fcn parameter is the application-specified feedback function called to
report Berkeley DB operation progress. The callback function must take three parameters:

¢ dbenv
The dbenv parameter is a reference to the enclosing database environment.
e opcode

The opcode parameter is an operation code. The opcode parameter may take on any of the
following values:

e DB_RECOVER
The environment is being recovered.

e percent

2/17/2015

DB C API Page 291



Library Version 12.1.6.1 The DB_ENV Handle

The percent parameter is the percent of the operation that has been completed, specified
as an integer value between 0 and 100.

Class
DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 292



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_flags()

#tinclude <db.h>

int
DB_ENV->set_flags(DB_ENV *dbenv, u_int32_t flags, int onoff);

Configure a database environment.

The database environment's flag values may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_flags",
one or more whitespace characters, and the method flag parameter as a string, and
optionally one or more whitespace characters, and the string "on" or "off". If the optional
string is omitted, the default is "on"; for example, "set_flags DB_TXN_NOSYNC" or "set_flags
DB_TXN_NOSYNC on". Because the DB_CONFIG file is read when the database environment is
opened, it will silently overrule configuration done before that time.

The DB_ENV->set_flags() method returns a non-zero error value on failure and 0 on success.

Parameters

flags

The flags parameter must be set by bitwise inclusively OR'ing together one or more of the
following values:

+ DB_AUTO_COMMIT

If set, DB handle operations for which no explicit transaction handle was specified, and
which modify databases in the database environment, will be automatically enclosed within
a transaction.

Calling DB_ENV->set_flags() with this flag only affects the specified DB_ENV handle (and
any other Berkeley DB handles opened within the scope of that handle). For consistent
behavior across the environment, all DB_ENV handles opened in the environment must
either set this flag or the flag should be specified in the DB_CONFIG configuration file.

This flag may be used to configure Berkeley DB at any time during the life of the
application.

« DB_CDB_ALLDB

If set, Berkeley DB Concurrent Data Store applications will perform locking on an
environment-wide basis rather than on a per-database basis.

Calling DB_ENV->set_flags() with the DB_CDB_ALLDB flag only affects the specified
DB_ENV handle (and any other Berkeley DB handles opened within the scope of that
handle). For consistent behavior across the environment, all DB_ENV handles opened in the
environment must either set the DB_CDB_ALLDB flag or the flag should be specified in the
DB_CONFIG configuration file.

2/17/2015

DB C API Page 293


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

The DB_CDB_ALLDB flag may be used to configure Berkeley DB only before the DB_ENV-
>open() (page 256) method is called.

DB_DIRECT_DB
Turn off system buffering of Berkeley DB database files to avoid double caching.

Calling DB_ENV->set_flags() with the DB_DIRECT_DB flag only affects the specified
DB_ENV handle (and any other Berkeley DB handles opened within the scope of that
handle). For consistent behavior across the environment, all DB_ENV handles opened in the
environment must either set the DB_DIRECT_DB flag or the flag should be specified in the
DB_CONFIG configuration file.

The DB_DIRECT_DB flag may be used to configure Berkeley DB at any time during the life of
the application.

DB_HOTBACKUP_IN_PROGRESS

Set this flag prior to creating a hot backup of a database environment. If a transaction
with the bulk insert optimization enabled (with the DB_TXN_BULK (page 628) flag)

is in progress, setting the DB_HOTBACKUP_IN_PROGRESS flag forces a checkpoint in the
environment. After this flag is set in the environment, the bulk insert optimization is
disabled, until the flag is reset. Using this protocol allows a hot backup procedure to
make a consistent copy of the database even when bulk transactions are ongoing. For
more information, see the section on Hot Backup in the Getting Started With Transaction
Processing Guide and the description of the DB_TXN_BULK (page 628) flag in the DB_ENV-
>txn_begin() (page 627) method.

The db_hotbackup (page 684) utility implements the protocol described above.
DB_DSYNC_DB

Configure Berkeley DB to flush database writes to the backing disk before returning

from the write system call, rather than flushing database writes explicitly in a separate
system call, as necessary. This is only available on some systems (for example, systems
supporting the IEEE/ANSI Std 1003.1 (POSIX) standard O_DSYNC flag, or systems supporting
the Windows FILE_FLAG_WRITE_THROUGH flag). This flag may result in inaccurate file
modification times and other file-level information for Berkeley DB database files. This flag
will almost certainly result in a performance decrease on most systems. This flag is only
applicable to certain filesysystems (for example, the Veritas VxFS filesystem), where the
filesystem's support for trickling writes back to stable storage behaves badly (or more likely,
has been misconfigured).

Calling DB_ENV->set_flags() with the DB_DSYNC_DB flag only affects the specified
DB_ENV handle (and any other Berkeley DB handles opened within the scope of that
handle). For consistent behavior across the environment, all DB_ENV handles opened in the
environment must either set the DB_DSYNC_DB flag or the flag should be specified in the
DB_CONFIG configuration file.

2/17/2015

DB C API Page 294


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

The DB_DSYNC_DB flag may be used to configure Berkeley DB at any time during the life of
the application.

DB_MULTIVERSION

If set, all databases in the environment will be opened as if DB_MULTIVERSION is passed to
the DB->open() (page 70) method. This flag will be ignored for queue databases for which
DB_MULTIVERSION is not supported.

Calling DB_ENV->set_flags() with the DB_MULTIVERSION flag only affects the specified
DB_ENV handle (and any other Berkeley DB handles opened within the scope of that
handle). For consistent behavior across the environment, all DB_ENV handles opened in the
environment must either set the DB_MULTIVERSION flag or the flag should be specified in
the DB_CONFIG configuration file.

The DB_MULTIVERSION flag may be used to configure Berkeley DB at any time during the life
of the application.

DB_NOLOCKING

If set, Berkeley DB will grant all requested mutual exclusion mutexes and database locks
without regard for their actual availability. This functionality should never be used for
purposes other than debugging.

Calling DB_ENV->set_flags() with the DB_NOLOCKING flag only affects the specified
DB_ENV handle (and any other Berkeley DB handles opened within the scope of that
handle).

The DB_NOLOCKING flag may be used to configure Berkeley DB at any time during the life of
the application.

DB_NOMMAP

If set, Berkeley DB will copy read-only database files into the local cache instead of
potentially mapping them into process memory (see the description of the DB_ENV-
>set_mp_mmapsize() (page 448) method for further information).

Calling DB_ENV->set_flags() with the DB_NOMMAP flag only affects the specified DB_ENV
handle (and any other Berkeley DB handles opened within the scope of that handle). For
consistent behavior across the environment, all DB_ENV handles opened in the environment
must either set the DB_NOMMAP flag or the flag should be specified in the DB_CONFIG
configuration file.

The DB_NOMMAP flag may be used to configure Berkeley DB at any time during the life of
the application.

DB_NOPANIC

If set, Berkeley DB will ignore any panic state in the database environment. (Database
environments in a panic state normally refuse all attempts to call Berkeley DB functions,

2/17/2015

DB C API Page 295


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

returning DB_RUNRECOVERY.) This functionality should never be used for purposes other
than debugging.

Calling DB_ENV->set_flags() with the DB_NOPANIC flag only affects the specified DB_ENV
handle (and any other Berkeley DB handles opened within the scope of that handle).

The DB_NOPANIC flag may be used to configure Berkeley DB at any time during the life of
the application.

DB_OVERWRITE

Overwrite files stored in encrypted formats before deleting them. Berkeley DB overwrites
files using alternating Oxff, 0x00 and Oxff byte patterns. For file overwriting to be effective,
the underlying file must be stored on a fixed-block filesystem. Systems with journaling or
logging filesystems will require operating system support and probably modification of the
Berkeley DB sources.

Calling DB_ENV->set_flags() with the DB_OVERWRITE flag only affects the specified
DB_ENV handle (and any other Berkeley DB handles opened within the scope of that
handle).

The DB_OVERWRITE flag may be used to configure Berkeley DB at any time during the life of
the application.

DB_PANIC_ENVIRONMENT

If set, Berkeley DB will set the panic state for the database environment. (Database
environments in a panic state normally refuse all attempts to call Berkeley DB functions,
returning DB_RUNRECOVERY.) This flag may not be specified using the environment's
DB_CONFIG file.

Calling DB_ENV->set_flags() with the DB_PANIC_ENVIRONMENT flag affects the database
environment, including all threads of control accessing the database environment.

The DB_PANIC_ENVIRONMENT flag may be used to configure Berkeley DB only after the
DB_ENV->open() (page 256) method is called.

DB_REGION_INIT

In some applications, the expense of page-faulting the underlying shared memory regions
can affect performance. (For example, if the page-fault occurs while holding a lock, other
lock requests can convoy, and overall throughput may decrease.) If set, Berkeley DB will
page-fault shared regions into memory when initially creating or joining a Berkeley DB
environment. In addition, Berkeley DB will write the shared regions when creating an
environment, forcing the underlying virtual memory and filesystems to instantiate both
the necessary memory and the necessary disk space. This can also avoid out-of-disk space
failures later on.

Calling DB_ENV->set_flags() with the DB_REGION_INIT flag only affects the specified
DB_ENV handle (and any other Berkeley DB handles opened within the scope of that
handle). For consistent behavior across the environment, all DB_ENV handles opened in the

2/17/2015

DB C API Page 296


../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

environment must either set the DB_REGION_INIT flag or the flag should be specified in the
DB_CONFIG configuration file.

The DB_REGION_INIT flag may be used to configure Berkeley DB at any time during the life
of the application.

DB_TIME_NOTGRANTED

If set, database calls timing out based on lock or transaction timeout values will return
DB_LOCK_NOTGRANTED instead of DB_LOCK_DEADLOCK. This allows applications to
distinguish between operations which have deadlocked and operations which have exceeded
their time limits.

Calling DB_ENV->set_flags() with the DB_TIME_NOTGRANTED flag only affects the
specified DB_ENV handle (and any other Berkeley DB handles opened within the scope of
that handle). For consistent behavior across the environment, all DB_ENV handles opened
in the environment must either set the DB_TIME_NOTGRANTED flag or the flag should be
specified in the DB_CONFIG configuration file.

The DB_TIME_NOTGRANTED flag may be used to configure Berkeley DB at any time during the
life of the application.

Note that the DB_ENV->lock_get() (page 358) and DB_ENV->lock_vec() (page 372)
methods are unaffected by this flag.

DB_TXN_NOSYNC

If set, Berkeley DB will not write or synchronously flush the log on transaction commit. This
means that transactions exhibit the ACI (atomicity, consistency, and isolation) properties,
but not D (durability); that is, database integrity will be maintained, but if the application
or system fails, it is possible some number of the most recently committed transactions may
be undone during recovery. The number of transactions at risk is governed by how many log
updates can fit into the log buffer, how often the operating system flushes dirty buffers to
disk, and how often the log is checkpointed.

Calling DB_ENV->set_flags() with the DB_TXN_NOSYNC flag only affects the specified
DB_ENV handle (and any other Berkeley DB handles opened within the scope of that
handle). For consistent behavior across the environment, all DB_ENV handles opened in the
environment must either set the DB_TXN_NOSYNC flag or the flag should be specified in the
DB_CONFIG configuration file.

The DB_TXN_NOSYNC flag may be used to configure Berkeley DB at any time during the life
of the application.

DB_TXN_NOWAIT
If set and a lock is unavailable for any Berkeley DB operation performed in the context of a

transaction, cause the operation to return DB_LOCK_DEADLOCK (or DB_LOCK_NOTGRANTED
if configured using the DB_TIME_NOTGRANTED flag).

2/17/2015

DB C API Page 297


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED

Library Version 12.1.6.1 The DB_ENV Handle

Calling DB_ENV->set_flags() with the DB_TXN_NOWAIT flag only affects the specified
DB_ENV handle (and any other Berkeley DB handles opened within the scope of that
handle). For consistent behavior across the environment, all DB_ENV handles opened in the
environment must either set the DB_TXN_NOWAIT flag or the flag should be specified in the
DB_CONFIG configuration file.

The DB_TXN_NOWAIT flag may be used to configure Berkeley DB at any time during the life
of the application.

DB_TXN_SNAPSHOT

If set, all transactions in the environment will be started as if DB_TXN_SNAPSHOT were
passed to the DB_ENV->txn_begin() (page 627) method, and all non-transactional cursors
will be opened as if DB_TXN_SNAPSHOT were passed to the DB->cursor() (page 162) method.

Calling DB_ENV->set_flags() with the DB_TXN_SNAPSHOT flag only affects the specified
DB_ENV handle (and any other Berkeley DB handles opened within the scope of that
handle). For consistent behavior across the environment, all DB_ENV handles opened in the
environment must either set the DB_TXN_SNAPSHOT flag or the flag should be specified in
the DB_CONFIG configuration file.

The DB_TXN_SNAPSHOT flag may be used to configure Berkeley DB at any time during the
life of the application.

DB_TXN_WRITE_NOSYNC

If set, Berkeley DB will write, but will not synchronously flush, the log on transaction
commit. This means that transactions exhibit the ACI (atomicity, consistency, and isolation)
properties, but not D (durability); that is, database integrity will be maintained, but if the
system fails, it is possible some number of the most recently committed transactions may
be undone during recovery. The number of transactions at risk is governed by how often the
system flushes dirty buffers to disk and how often the log is checkpointed.

Calling DB_ENV->set_flags() with the DB_TXN_WRITE_NOSYNC flag only affects the
specified DB_ENV handle (and any other Berkeley DB handles opened within the scope of
that handle). For consistent behavior across the environment, all DB_ENV handles opened
in the environment must either set the DB_TXN_WRITE_NOSYNC flag or the flag should be
specified in the DB_CONFIG configuration file.

The DB_TXN_WRITE_NOSYNC flag may be used to configure Berkeley DB at any time during
the life of the application.

DB_YIELDCPU

If set, Berkeley DB will yield the processor immediately after each page or mutex
acquisition. This functionality should never be used for purposes other than stress testing.

Calling DB_ENV->set_flags() with the DB_YIELDCPU flag only affects the specified DB_ENV
handle (and any other Berkeley DB handles opened within the scope of that handle). For
consistent behavior across the environment, all DB_ENV handles opened in the environment

2/17/2015

DB C API Page 298


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

must either set the DB_YIELDCPU flag or the flag should be specified in the DB_CONFIG
configuration file.

The DB_YIELDCPU flag may be used to configure Berkeley DB at any time during the life of
the application.

onoff

If the onoff parameter is zero, the specified flags are cleared; otherwise they are set.

Errors

The DB_ENV->set_flags() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB_ENV

See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 299


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_intermediate_dir_mode()

#include <db.h>

int
DB_ENV->set_intermediate_dir_mode(DB_ENV *dbenv, const char *mode);

By default, Berkeley DB does not create intermediate directories needed for recovery, that
is, if the file /a/b/c/mydatabase is being recovered, and the directory path b/c does not
exist, recovery will fail. This default behavior is because Berkeley DB does not know what
permissions are appropriate for intermediate directory creation, and creating the directory
might result in a security problem.

The DB_ENV->set_intermediate_dir_mode() method causes Berkeley DB to create any
intermediate directories needed during recovery, using the specified permissions.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, created directories are
owned by the process owner; the group ownership of created directories is based on the
system and directory defaults, and is not further specified by Berkeley DB.

The database environment’s intermediate directory permissions may also be configured using
the environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the
string "set_intermediate_dir_mode", one or more whitespace characters, and the directory
permissions. Because the DB_CONFIG file is read when the database environment is opened, it
will silently overrule configuration done before that time.

The DB_ENV->set_intermediate_dir_mode() method configures operations performed
using the specified DB_ENV handle, not all operations performed on the underlying database
environment.

The DB_ENV->set_intermediate_dir_mode() method may not be called after the DB_ENV-
>open() (page 256) method is called.

The DB_ENV->set_intermediate_dir_mode() method returns a non-zero error value on
failure and 0 on success.

Parameters

mode
The mode parameter specifies the directory permissions.

Directory permissions are interpreted as a string of nine characters, using the character

set r (read), w (write), x (execute or search), and - (none). The first character is the read
permissions for the directory owner (set to either r or -). The second character is the write
permissions for the directory owner (set to either w or -). The third character is the execute
permissions for the directory owner (set to either x or -).

Similarly, the second set of three characters are the read, write and execute/search
permissions for the directory group, and the third set of three characters are the read,
write and execute/search permissions for all others. For example, the string rwx------ would

2/17/2015

DB C API Page 300


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1

The DB_ENV Handle

configure read, write and execute/search access for the owner only. The string rwxrwx---
would configure read, write and execute/search access for both the owner and the group.

The string rwxr----- would configure read, write and execute/search access for the directory
owner and read-only access for the directory group.

Errors

The DB_ENV->set_intermediate_dir_mode() method may fail and return one of the
following non-zero errors:

EINVAL

If the method was called after DB_ENV->open() (page 256) was called; or if an invalid flag
value or parameter was specified.

Class

DB_ENV

See Also

Database Environments and Related Methods (page 204)

2/17/2015

DB C API Page 301



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_isalive()

#tinclude <db.h>

int
DB_ENV->set_isalive(DB_ENV *dbenv, int (*is_alive)(DB_ENV *dbenv,
pid_t pid, db_threadid_t tid, u_int32_t flags));

Declare a function that returns if a thread of control (either a true thread or a process) is
still running. The DB_ENV->set_isalive() method supports the DB_ENV->failchk() (page
222) method. For more information, see Architecting Data Store and Concurrent Data Store
applications, and Architecting Transactional Data Store applications, both in the Berkeley DB
Programmer's Reference Guide.

The DB_ENV->set_isalive() method configures operations performed using the specified
DB_ENV handle, not all operations performed on the underlying database environment.

The DB_ENV->set_isalive() method may be called at any time during the life of the
application.

The DB_ENV->set_isalive() method returns a non-zero error value on failure and 0 on
success.

Parameters

is_alive

The is_alive parameter is a function which returns non-zero if the thread of control,
identified by the pid and tid arguments, is still running. The function takes four arguments:

« dbenv

The dbenv parameter is the enclosing database environment handle, allowing application
access to the application-private fields of that object.

« pid

The pid parameter is a process ID returned by the function specified to the DB_ENV-
>set_thread_id() (page 316) method.

- tid

The tid parameter is a thread ID returned by the function specified to the DB_ENV-
>set_thread_id() (page 316) method.

« flags
The flags parameter must be set to 0 or the following value:
« DB_MUTEX_PROCESS_ONLY

Return only if the process is alive, the thread ID should be ignored.

2/17/2015

DB C API Page 302


../../programmer_reference/cam_app.html
../../programmer_reference/cam_app.html
../../programmer_reference/transapp_app.html

Library Version 12.1.6.1 The DB_ENV Handle

Errors

The DB_ENV->set_isalive() method may fail and return one of the following non-zero
errors:

EINVAL

An invalid flag value or parameter was specified.
Class

DB_ENV
See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 303



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_memory_init()

#tinclude <db.h>

int
DB_ENV->set_memory_init(DB_ENV *dbenv, DB_MEM_CONFIG type,
u_int32_t count);

This method sets the number of objects to allocate and initialize for a specified structure
when an environment is created. Doing this helps avoid memory contention after startup.
Using this method is optional; failure to use this method causes BDB to allocate a minimal
number of structures that will grow dynamically. These structures are all allocated from the
main environment region. The amount of memory in this region can be set via the DB_ENV-
>set_memory_max() (page 306) method. If this method is not called then memory will be
limited to the initial settings or by the (deprecated) set maximum interfaces.

The database environment's initialization may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_memory_init", one or more whitespace characters, followed by the struct specification,
more white space and the count to be allocated. Because the DB_CONFIG file is read when the
database environment is opened, it will silently overrule configuration done before that time.

The DB_ENV->set_memory_init() method must be called prior to opening the database
environment. It may be called as often as needed to set the different configurations.

Parameters

type
The type parameter must be set to one of the following:

« DB_MEM_LOCK

Initialize locks. A thread uses this structure to lock a page (or record for the QUEUE access
method) and hold it to the end of a transactions.

e DB_MEM_LOCKOBIJECT

Initialize lock objects. For each page (or record) which is locked in the system, a lock object
will be allocated.

 DB_MEM_LOCKER

Initialize lockers. Each thread which is active in a transactional environment will use a
locker structure either for each transaction which is active, or for each non-transactional
cursor that is active.

+ DB_MEM_LOGID

Initialize the log fileid structures. For each database handle which is opened for writing in a
transactional environment, a log fileid structure is used.

2/17/2015

DB C API Page 304


../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Library Version 12.1.6.1 The DB_ENV Handle

e DB_MEM_TRANSACTION

Initialize transaction structures. Each active transaction uses a transaction structure until it
either commits or aborts.

Note

Currently transaction structures are not preallocated. This setting will be used to
preallocate memory and objects related to transactions such as locker structures
and mutexes.

« DB_MEM_THREAD

Initialize thread identification structures. If thread tracking is enabled then each active
thread will use a structure. Note that since a thread does not signal the BDB library that
it will no longer be making calls, unused structures may accumulate until a cleanup is
triggered either using a high water mark or by running DB_ENV->failchk() (page 222).

count
The count parameter sets the number of specified objects to initialize.

The count specified for locks and lock objects should be at least 5 times the number of lock
table partitions. You can examine the current number of lock table partitions configured for
your environment using the DB_ENV->get_lk_partitions() (page 338) method.

Errors

The DB_ENV->set_memory_init() method may fail and return one of the following non-zero
errors:

EINVAL

If the method was called after DB_ENV->open() (page 256) was called; or if an invalid flag
value or parameter was specified.

Class
DB_ENV

See Also

Database Environments and Related Methods (page 204)

2/17/2015 DB C API Page 305



Library Version 12.1.6.1 The DB_ENV Handle

DB_ENV->set_memory_max()

#tinclude <db.h>

int
DB_ENV->set_memory_max(DB_ENV *dbenv, u_int32_t gbytes, u_int32_t bytes);

This method sets the maximum amount of memory to be used by shared structures in the main
environment region. These are the structures used to coordinate access to the environment
other than mutexes and those in the page cache (memory pool). If the region files are in
memory mapped files, or if DB_PRIVATE is specified, the memory specified by this method is
not allocated completely at startup. As memory is needed, the shared region will be extended
or, in the case of DB_PRIVATE, more memory will be allocated using the system malloc call.
For memory mapped files, a mapped region will be allocated to this size but the underlying
file will only be allocated sufficient memory to hold the initial allocation of shared memory
structures as set by DB_ENV->set_memory_init() (page 304).

If no memory maximum is specified then it is calculated from defaults, initial settings or
(deprecated) maximum settings of the various shared structures. In the case of environments
created with DB_PRIVATE, no maximum need be set and the shared structure allocation will
grow as needed until the process memory limit is exhausted.

The database environment's maximum memory may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_memory_max", one or more whitespace characters, followed by the maximum to be
allocated. Because the DB_CONFIG file is read when the database environment is opened, it
will silently overrule configuration d